精英家教网 > 初中数学 > 题目详情

已知:如图,四边形ABCD中,∠D=90°,∠B=∠C=70°,AE平分∠BAD,交BC于点E,EF⊥AE,交CD于点F.
(1)求∠BAE的度数;
(2)写出图中与∠AEB相等的角并说明理由.

解:(1)∵四边形ABCD中,∠D=90°,∠B=∠C=70°,
∴∠BAD=360°-∠B-∠C-∠D=130°,
∵AE平分∠BAD,
∴∠BAE=∠BAD=×130°=65°;

(2)∠AEB=∠CEF.理由如下:
在△ABE中,∠AEB=180°-∠B-∠BAE=45°,
∵EF⊥AE,
∴∠AEF=90°,
∴∠CEF=180°-∠AEB-∠AEF=180°-45°-90°=45°,
∴∠AEB=∠CEF.
分析:(1)先根据四边形的内角和公式求出∠BAD的度数,再根据角平分线的定义解答即可;
(2)根据三角形的内角和定理求出∠AEB的度数,再根据平角等于180°计算出∠CEF的度数,从而得解.
点评:本题考查了多边形的内角和公式与三角形的内角和定理,以及角平分线的定义,本题需要计算后根据角度的具体数值进行判断.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,四边形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.
试求:(1)AC的长;(2)四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,四边形ABCD内接于⊙O,且AB∥CD,AD∥BC,
求证:四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,且BE=DF
(1)求证:CE=CF;
(2)求∠CEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD中,BC=CD=10,AB=15,AB⊥BC,CD⊥BC,若把四边形ABCD绕直线AB旋转一周,则所得几何体的表面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD及一点P.
求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.

查看答案和解析>>

同步练习册答案