精英家教网 > 初中数学 > 题目详情

如图,已知直线AB与x轴、y轴交于A、B两点与反比例函数的图象交于C点和D点,若OA=3,点C的横坐标为-3,tan∠BAO=数学公式
(1)求反比例函数与一次函数的解析式;
(2)求△COD的面积;
(3)若一次函数的值大于反比例函数的值,求x的取值范围.

解:(1)在Rt△AOB中,tan∠BAO==
∵OA=3,
∴OB=2,
∴B(0,2),A(3,0),
设直线AB解析式为y=kx+b,
由题意得

∴一次函数的解析式为y=-x+2,
∵点C在直线上,且横坐标为-3,
∴当x=-3时,y=4,
∴C(-3,4),
∴反比例函数解析式为y=-

(2)消y得x2-3x-18=0,
∴x1=-3,x2=6,
∴D(6,-2),
∴S△DOC=S△AOC+S△AOD=×3×4+×3×2=9

(3)∵一次函数的值大于反比例函数的值,
∴-x+2>-,解得x<-3或0≤x<6.
分析:(1)在Rt△AOB中由锐角三角函数的定义可求出OB的值,进而可得出A、B两点的坐标,用待定系数法可求出直线AB的解析式及反比例函数的解析式;
(2)解一次函数与反比例函数解析式组成的方程组即可得出D点坐标,再由S△DOC=S△AOC+S△AOD即可得出结论;
(3)由一次函数的值大于反比例函数的值可得出关于x的不等式,求出x的取值范围即可.
点评:本题考查的是用待定系数法求反比例函数及一次函数的解析式、锐角三角函数的定义及三角形的面积公式,解答此题时要先根据锐角三角函数的定义求出OB的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的精英家教网方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM.
(1)求⊙M的半径.
(2)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM并延长交x轴于N.
(1)求⊙M的半径.
(2)求线段AC的长.
(3)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知直线AB与CD相交于点O,OB平分∠EOD,∠1+∠2=90°,
问:图中的线是否存在互相垂直的关系,若有,请写出哪些线互相垂直,并说明理由;若无,直接说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,已知直线AB与x轴、y轴交于A、B两点与反比例函数的图象交于C点和D点,若OA=3,点C的横坐标为-3,tan∠BAO=
23

(1)求反比例函数与一次函数的解析式;
(2)求△COD的面积;
(3)若一次函数的值大于反比例函数的值,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB与CD相交于点O,OE⊥CD,OF平分∠BOE,若∠AOC=∠EOF,
(1)求∠AOC的度数;
(2)写出∠EOF的余角和补角.

查看答案和解析>>

同步练习册答案