13£®ÈôÁ½¸ö¶þ´Îº¯ÊýͼÏóµÄ¶¥µã¡¢¿ª¿Ú·½Ïò¶¼Ïàͬ£¬Ôò³ÆÕâÁ½¸ö¶þ´Îº¯ÊýΪ¡°Í¬´Ø¶þ´Îº¯Êý¡±£®
£¨1£©Çëд³öÁ½¸öΪ¡°Í¬´Ø¶þ´Îº¯Êý¡±µÄº¯Êý£®
£¨2£©ÒÑÖª¹ØÓÚxµÄ¶þ´Îº¯Êýy1=2x2-4mx+2m2+1ºÍy2=ax2+bx+$\frac{5}{4}$£¬ÆäÖÐy1µÄͼÏó¾­¹ýµãP£¨1£¬1£©£¬y2Óëy1Ϊ¡°Í¬´Ø¶þ´Îº¯Êý¡±£¬
¢ÙÇómµÄÖµ¼°º¯Êýy2µÄ±í´ïʽ£®
¢ÚÈçͼµãAºÍµãCÊǺ¯Êýy1Éϵĵ㣬µãBºÍµãDÊǺ¯Êýy2Éϵĵ㣬ÇÒ¶¼ÔÚ¶Ô³ÆÖáÓҲ࣬ÈôAB¡ÎCD¡ÎxÖᣬBC¡ÍAB£¬Çó$\frac{CD}{AB}$µÄÖµ£¨Ö»ÐèÖ±½Ó´ð°¸£©£®

·ÖÎö £¨1£©¸ù¾Ý¡°Í¬´Ø¶þ´Îº¯Êý¡±µÄ¶¨Ò壬ֻҪÁ½¸öº¯ÊýµÄ¶¥µã¡¢¿ª¿Ú·½Ïò¶¼Ò»Ñù¼´¿É£»
£¨2£©¢Ù°ÑPµã×ø±ê´úÈëy1=2x2-4mx+2m2+1£¬¿ÉÇóµÃmµÄÖµ£¬Ôò¿ÉÇóµÃÆä½âÎöʽ£»ÓÉy1µÄ½âÎöʽ¿ÉÇóµÃÆä¶¥µã×ø±ê£¬Ôò¿ÉµÃy2µÄ¶¥µã×ø±ê£¬´úÈë¿ÉÇóµÃy2µÄ½âÎöʽ£»¢ÚÉèµãBµÄ×ø±êΪ£¨n£¬$\frac{1}{4}$£¨n-1£©2+1£©£¨n£¾1£©£¬ÓÉAB¡ÎCD¡ÎxÖáºÍBC¡ÍABÀûÓöþ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¼´¿ÉµÃ³öµãB¡¢C¡¢DµÄ×ø±ê£¬ÔÙ¸ù¾ÝÁ½µã¼äµÄ¾àÀë¿ÉÇó³öAB¡¢CDµÄ³¤¶È£¬½«Æä´úÈë$\frac{CD}{AB}$¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßy=x2ºÍy=2x2µÄ¶¥µã¾ùΪ£¨0£¬0£©£¬ÇÒ¿ª¿ÚÏòÉÏ£¬
¡ày=x2ºÍy=2x2Ϊ¡°Í¬´Ø¶þ´Îº¯Êý¡±£®
£¨2£©¢Ù°ÑP£¨1£¬1£©´úÈëy1=2x2-4mx+2m2+1£¬
µÃ£º1=2-4m+2m2+1£¬½âµÃ£ºm=1£¬
¡ày1=2x2-4x+3=2£¨x-1£©2+1£®
¡ßy2Óëy1Ϊ¡°Í¬´Ø¶þ´Îº¯Êý¡±£¬
¡à¶¥µãÒ»ÑùΪ£¨1£¬1£©£¬¼´y2=a£¨x-1£©2+1£¬
¡àa+1=$\frac{5}{4}$£¬
¡àa=$\frac{1}{4}$£¬
¡àº¯Êýy2µÄ±í´ïʽΪy2=$\frac{1}{4}$£¨x-1£©2+1=$\frac{1}{4}$x2-$\frac{1}{2}$x+$\frac{5}{4}$£®
¢ÚÉèµãBµÄ×ø±êΪ£¨n£¬$\frac{1}{4}$£¨n-1£©2+1£©£¨n£¾1£©£¬
¡ßAB¡ÎxÖᣬ
¡àµãAµÄ×ø±êΪ£¨$\frac{\sqrt{2}}{4}$£¨n-1£©+1£¬$\frac{1}{4}$£¨n-1£©2+1£©£¬
¡ßAB¡ÎCD¡ÎxÖᣬBC¡ÍAB£¬
¡àµãCµÄ×ø±êΪ£¨n£¬2£¨n-1£©2+1£©£¬µãDµÄ×ø±êΪ£¨2$\sqrt{2}$£¨n-1£©+1£¬2£¨n-1£©2+1£©£®
¡àAB=n-[$\frac{\sqrt{2}}{4}$£¨n-1£©+1]=£¨n-1£©£¨1-$\frac{\sqrt{2}}{4}$£©£¬CD=2$\sqrt{2}$£¨n-1£©+1-n=£¨n-1£©£¨2$\sqrt{2}$-1£©£¬
¡à$\frac{CD}{AB}$=$\frac{£¨n-1£©£¨2\sqrt{2}-1£©}{£¨n-1£©£¨1-\frac{\sqrt{2}}{4}£©}$=$\frac{2\sqrt{2}-1}{\frac{4-\sqrt{2}}{4}}$=2$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁË¡°Í¬´Ø¶þ´Îº¯Êý¡±µÄ¶¨Òå¡¢´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ¡¢¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢Æ½ÐÐÏßµÄÐÔÖÊÒÔ¼°Á½µã¼äµÄ¾àÀ룬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾Ý¡°Í¬´Ø¶þ´Îº¯Êý¡±µÄ¶¨Òåд³ö¶þ´Îº¯Êý£»£¨2£©¢ÙÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽ£»¢ÚÀûÓöþ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ÕÒ³öµãB¡¢C¡¢DµÄ×ø±ê£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬Ôڵȱߡ÷ABCÖУ¬ADƽ·Ö¡ÏBAC½»BCÓëµãD£¬µãEΪAC±ßµÄÖе㣬BC=8£»ÔÚADÉÏÓÐÒ»¶¯µãQ£¬ÔòQC+QEµÄ×îСֵΪ4$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®°Ñ¶þ´Îº¯Êýy=x2-2x+3Åä·½³Éy=£¨x-m£©2+kµÄÐÎʽ£¬ÒÔϽá¹ûÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®y=-£¨x-1£©2+4B£®y=£¨x-1£©2+2C£®y=£¨x+1£©2+2D£®y=£¨x-2£©2+3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èôa£¬b»¥Îªµ¹Êý£¬m£¬n»¥ÎªÏà·´Êý£¬kµÄ¾ø¶ÔֵΪ2£¬Ôò5m+5n+$\frac{2}{ab}$-k=4»ò0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÓÐÀíÊýaÔÚÊýÖáÉ϶ÔÓ¦µÄµãÈçͼËùʾ£¬Ôòa£¬-a£¬1µÄ´óС¹ØÏµÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®-a£¼a£¼1B£®a£¼-a£¼1C£®1£¼-a£¼aD£®a£¼1£¼-a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚxÖáÉÏÓÐÁ½µãA£¨m£¬0£©£¬B£¨n£¬0£©£¨n£¾m£¾0£©£¬·Ö±ð¹ýµãA£¬µãB×÷xÖáµÄ´¹Ïߣ¬½»Å×ÎïÏßy=x2ÓÚµãC£¬µãD£®Ö±ÏßOC½»Ö±ÏßBDÓÚµãE£¬Ö±ÏßOD½»Ö±ÏßACÓÚµãF£¬µãE£¬µãFµÄ×Ý×ø±ê·Ö±ð¼Ç×÷yE£¬yF
£¨1£©ÌØÀý̽¾¿
µ±m=1£¬n=2ʱ£¬yE=2£¬yF=2
µ±m=3£¬n=5ʱ£¬yE=15£¬yF=15
£¨2£©¹éÄÉÖ¤Ã÷
¶ÔÈÎÒâm£¬n£¨n£¾m£¾0£©£¬²ÂÏëyEÓëyFµÄ´óС¹ØÏµ£¬²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮
£¨3£©ÍØÕ¹Ó¦ÓÃ
Èô½«Å×ÎïÏßy=x2¸ÄΪÅ×ÎïÏßy=ax2£¨a£¾0£©£¬ÆäËüÌõ¼þ²»±ä£¬ÇëÖ±½Óд³öyEÓëyFµÄ´óС¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èôµã£¨a+1£¬3£©£¬µã£¨-2£¬b-2£©¹ØÓÚÔ­µã¶Ô³Æ£¬Ôòa=1£¬b=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¼×¡¢ÒÒÁ½ÈËÆï×ÔÐгµ´ÓÏà¾à49ǧÃ×µÄÁ½µØÏàÏò¶øÐУ¬¼×ÏÈ×ß1Сʱ£®ÒÒÔÙ³ö·¢£®ÒÒ³ö·¢2СʱºóÁ½ÈËÏàÓö£®Èô¼×±ÈÒÒÿСʱ¶àÆï3ǧÃ×£®Çó¼×¡¢ÒÒÁ½È˵ÄËÙ¶È£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªa=$\sqrt{5}$+1£¬b=$\sqrt{5}$-1£¬ÇóÏÂÁи÷ʽµÄÖµ£º
£¨1£©a2+2ab+b2£»
£¨2£©a2b+ab2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸