精英家教网 > 初中数学 > 题目详情
10.如图,点O、A、B在同一直线上,OC平分∠AOD,OE平分∠FOB,∠COF=∠DOE=90°.
(1)∠COD与∠EOF有什么数量关系?说明理由.
答:∠COD=∠EOF,
理由如下:∵∠COF=∠DOE,
∴∠COF-∠DOF=∠DOE-∠DOF.
∴结论成立.
(2)∠AOC与∠BOF有什么数量关系?说明理由.
理由如下:∵OC平分∠AOD,OE平分∠FOB,
∴∠COD=∠AOC,∠BOF=2∠EOF,
∵由(1)得到的∠COD与∠EOF关系.
∴∠AOC与∠BOF的数量关系为2∠AOC=∠BOF.
(3)求∠AOD的度数.

分析 (1)由已知条件容易得出∠COD=∠EOF;
(2)由角平分线的定义容易得出结论;
(3)由角的互余关系求出∠AOC,即可得出结果.

解答 解:(1)∠COD=∠EOF,理由如下:
∵∠COF=∠DOE=90°,
∴∠COF-∠DOF=∠DOE-∠DOF,
∴∠COD=∠EOF.
∴结论成立;故答案为:=,∠DOF,∠DOF.
(2)2∠AOC=∠BOF;理由如下:
∵OC平分∠AOD,OE平分∠FOB,
∴∠COD=∠AOC,∠BOF=2∠EOF,
∵由(1)得到的∠COD与∠EOF关系.
∴∠AOC与∠BOF的数量关系为2∠AOC=∠BOF.
故答案为:2∠AOC=∠BOF;
(3)由(2)得:∠BOF=2∠AOC,
∵∠BOF+∠AOC=180°-∠COF=90°,
∴∠AOC=30°,
∴∠AOD=2∠AOC=60°.

点评 本题考查了角平分线的定义、角的互余关系;熟练掌握角平分线的定义是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.(1)在直角坐标系中画出顶点坐标分别为:A(4,-1),B(3,-5),C(1,-3)的三角形△ABC.
(2)画出△ABC关于y轴对称的图形△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)交x轴于A(-1,0)、B(5,0)两点,交y轴负半轴于点C,点D为抛物线的顶点.
(1)如图1,若点C的坐标为(0,-$\frac{20}{9}$),求此抛物线的解析式;
(2)如图2,在(1)的条件下,点P在抛物线的对称轴上,设⊙P的半径为r,当⊙P与x轴和直线BD都相切时,求圆心P的坐标;
(3)如图3,若△ABC是等腰三角形,求点C的坐标;
(4)如图4,若点C在y轴的负半轴上移动,则△ACD与△ABC的面积之比是否为定值?若是定值,请求出其值;若不是定值,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,再求值:
(1)3x2y-[2x2y-(2xyz)-x2z]+4(x2z-xyz),其中,x=-2,y=4,z=2
(2)2(a2b+3ab2)-3(a2b+2ab2-1)-2a2b-2,其中a=-2,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,将△ABC沿直线AD翻折,使点B与AC边上的点E重合,若AB=AD=5,AC=9,则DC=6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知关于x的方程x2+2x-a+1=0没有实数根,试判断关于y的方程y2+ay+a=1是否一定有两个不相等的实数根,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.请从以下A、B两题中任选一题解答,若两题都做,按A题给分.
A.如图1,△ABC和△FED均为等腰直角三角形,AC与BE重合,AB=AC=EF=3,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB重合时,旋转停止.现不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图2.
(1)始终与△AGC相似的三角形是△HAB和△HGA;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图2的情形说明理由);
(3)在整个旋转过程中,当旋转角为多少度时,△AGH是等腰三角形?请直接写出旋转的度数.
B.如图(1),正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上;
(1)求S△DBF
(2)把正方形AEFG绕点A按逆时针方向旋转45°得到图(2)中的S△DBF
(3)将正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF存在最大值与最小值,请直接写出最大值为$\frac{15}{2}$,最小值为$\frac{3}{2}$.
我选做的是A题.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=$\frac{5}{12}{x^2}$+bx+c与x轴相交,其中一个交点A(4,0),与y轴的交点B(0,2).
(1)求b、c的值;
(2)如图1,若将线段AB绕A点顺时针旋转90°至AD,求D点的坐标,并判断D点是否在此抛物线上;
(3)在(2)中条件不变的情况下,如图2,点P为x轴上一动点,过P点作x轴的垂线分别交BD、BA于M、N,交抛物线于Q,当P点从原点O出发,以每秒1个单位的速度沿x轴向右移动t秒时(0<t<4),此垂线也在向右平移.
①当t为何值时,线段MQ的长度最大;
②当t为何值时,以B、P、Q为顶点构成的三角形的面积与△BMN的面积相等.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.计算4x3•x2的结果是(  )
A.4x6B.4x5C.4x4D.4x3

查看答案和解析>>

同步练习册答案