精英家教网 > 初中数学 > 题目详情
已知直线y=x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°,使点A落在点C,点B落在点D,抛物线y=ax2+bx+c过点A、D、C,其对称轴与直线AB交于点P,
(1)求抛物线的表达式;
(2)求∠POC的正切值;
(3)点M在x轴上,且△ABM与△APD相似,求点M的坐标.

【答案】分析:(1)先求出点A、B的坐标,再根据旋转的性质求出点C、D的坐标,然后利用待定系数法求抛物线解析式即可;
(2)根据抛物线解析式求出对称轴解析式,然后求出点P的坐标,过点P作PQ⊥x轴,则PQ∥y轴,根据两直线平行,内错角相等可得∠OPQ=∠POC,然后利用点P的坐标,根据锐角的正切值的定义列式计算即可得解;
(3)根据点M在x轴上,且△ABM与△APD相似可知,点M一定在点A的右侧,然后求出AP、AB、AD的长度,因为对应边不明确,所以分①AP和AB是对应边,②AP和AM是对应边,然后根据相似三角形对应边成比例列式求出AM的长度,再根据点A的坐标求解即可.
解答:解:(1)当y=0时,x+1=0,解得x=-2,
当x=0时,y=1,
所以A(-2,0),B(0,1),
∵△AOB顺时针旋转90°得到△COD,
∴C(0,2),D(1,0),
∵抛物线y=ax2+bx+c过点A、D、C,

解得
∴抛物线解析式为y=-x2-x+2;

(2)根据(1),抛物线对称轴为x=-=-=-
×(-)+1=
∴点P的坐标为(-),
过点P作PQ⊥x轴于Q,则PQ∥y轴,
∴∠POC=∠OPQ,
∵tan∠OPQ==
∴tan∠POC=

(3)∵点M在x轴上,且△ABM与△APD相似,
∴点M必在点A的右侧,
AP==
AB==
AD=1-(-2)=1+2=3,
∵∠A=∠A,
∴①AP和AB是对应边时,
=
=
解得AM=4,
设点M坐标为(x,0),
则x-(-2)=4,
解得x=2,
所以点M的坐标为(2,0),
②AP和AM是对应边时,
=
=
解得AM=
设点M坐标为(x,0),
则x-(-2)=
解得x=-
所以点M的坐标为(-,0),
综上所述,存在点M(2,0)或(-,0),使△ABM与△APD相似.
点评:本题是对二次函数的综合考查,有旋转变换的性质,待定系数法求函数解析式,锐角三角形函数,两点间的距离公式,相似三角形对应边成比例,综合性较强,求出二次函数解析式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知直线y=-x+4与反比例函数y=
kx
的图象相交于点A(-2,a),并且与x轴相交于点B.
(1)求a的值;
(2)求反比例函数的表达式;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知直线y=kx+b与直线y=3x平行,且与y轴相交于(0,-9),则此直线函数的解析式为
y=3x-9

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知直线y=2x-2与双曲线图y=
kx
交于点A(2,y)、B(m,n).
(1)求反比例函数的解析式;
(2)求B点的坐标;
(3)写出反比例函数值大于一次函数值的x的取值范围;
(4)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意,解答下列问题:
(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长;
(2)公式推导:类比(1)的求解过程,P1(x1,y1),P2(x2,y2)是平面直角坐标系内的两点,如图2,请你通过构造直角三角形的方法推导公式P1P2=
(x2-x1)2+(y2-y1)2

(3)公式应用:已知:如图3,A(6,1),B(2,4),问:是否在x轴、y轴上分别存在P、Q两点,使得四边形ABQP的周长最短?若存在,求出四边形ABQP的周长;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线y1=x+m与y2=kx-1相交于点P(-1,1),则关于x的不等式x+m>kx-1的解集的是
x>-1
x>-1

查看答案和解析>>

同步练习册答案