精英家教网 > 初中数学 > 题目详情

直线y=-x+m与直线y=x+n的交点坐标是(a,8),则m+n=________.

16
分析:把点(a,8)发你代入两直线解析式,然后把两式相加即可得到m+n的值.
解答:把(a,8)分别代入y=-x+m、y=x+n得-a+m=8,a+n=8,
所以-a+m+a+n=16,
即m+n=16.
故答案为16.
点评:本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(结果精确到0.01米)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,
(1)求y与x之间的函数关系式;
(2)当△ABC与正方形DEFG重合部分的面积为
32
时,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

红星中学篮球课外活动小组的同学自己动手制作一副简易篮球架.如图,是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(计算结果精确到0.01米,参考数据:(sin40°≈0.588,cos40°≈0.809,tan40°≈0.727.)

查看答案和解析>>

同步练习册答案