精英家教网 > 初中数学 > 题目详情
(2006•湘潭模拟)如图,直线l交两坐标轴于A、B,点C在线段AB上,若∠AOC=a,OA=OB,那么S△OBC:S△OAC=( )

A.sinα
B.cosα
C.tanα
D.cotα
【答案】分析:作CD⊥y轴于点D,CE⊥x轴于点E.根据两三角形中AO=BO,得出S△OBC:S△OAC=CE:CD;
再根据三角函数化简即可得出CE和CD的比值.
解答:解:作CD⊥y轴于点D,CE⊥x轴于点E.
∵OA=OB,
∴S△OBC:S△OAC=CE:CD=OC•sin(-α):OC•sinα=cosα:sinα=cotα.
故选D.
点评:本题用到的知识点为:等底的两个三角形,面积之比就等于高的比.
练习册系列答案
相关习题

科目:初中数学 来源:2006年湖南省湘潭市中小学教师业务理论考试初中数学试卷(解析版) 题型:解答题

(2006•湘潭模拟)如图,已知,抛物线y=ax2+bx+c(a<0)经过A(-1,0),C(0,1)两点,直线l与抛物线相交于C,B(,1)两点.
(1)求该抛物线的解析式;
(2)若点M(m,t)(m<0,t>0)在抛物线上,MN∥x轴,且与该抛物线的另一交点N,问:是否存在实数t,使得MN=2AO?若存在,求出t值,若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年湖南省湘潭市中小学教师业务理论考试初中数学试卷(解析版) 题型:解答题

(2006•湘潭模拟)如图,正方形ABCD与正方形OMNP的边长均为10,点O是正方形ABCD的中心,正方形OMNP绕O点旋转,证明:无论正方形OMNP旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值.

查看答案和解析>>

科目:初中数学 来源:2006年湖南省湘潭市中小学教师业务理论考试初中数学试卷(解析版) 题型:选择题

(2006•湘潭模拟)如图,△ABC是锐角三角形,正方形DEFG的一边在BC上,其余两个定点在AB,AC上,记△ABC的面积为S1,正方形的面积为S2,则( )

A.S1≥2S2
B.S1≤2S2
C.S1>2S2
D.S1<2S2

查看答案和解析>>

科目:初中数学 来源:2006年湖南省湘潭市中小学教师业务理论考试初中数学试卷(解析版) 题型:选择题

(2006•湘潭模拟)定义图形A※B是由图形A与图形B组成的图形,已知:

则A※D是下图中的( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案