精英家教网 > 初中数学 > 题目详情

如图,已知AB为⊙O的直径,C为⊙O上一点,CD与AB的延长线交于点D.
(1)若∠CAB=∠BCD,求证:CD是⊙O的切线;
(2)若AB=BD,CD=6,sin∠BCD=数学公式,求CB的长.

(1)证明:连接OC.
∵AB是⊙O的直径,
∴∠ACB=90°(直径所对的圆周角是直角);
又∵OA=OC(⊙O的半径),
∴∠CAO=∠OCA,即∠CAB=∠OCA(等边对等角);
∵∠CAB=∠BCD(已知),
∴∠BCD=∠OCA,
∴∠OCA+∠OCB=∠BCD+∠OCB,即∠ACB=∠OCD=90°,
∴OC⊥CD,
即CD是⊙O的切线;

(2)解:∵OB=OA=OC=AB,AB=BD,
∴OD=3OC;
由(1)知,∠OCD=90°.则在Rt△OCD中,OD2=OC2+CD2,CD=6,
∴OC=
∴AB=2OC=3
∵∠OCA+∠OCB=∠BCD+∠OCB=90°,∠CAB=∠OCA,
∴∠BCD=∠CAB,
∴sin∠BCD=sin∠CAB==
∴CB=AB=
即CB=
分析:(1)连接OC.欲证CD是⊙O的切线,只需证明OC⊥CD即可;
(2)由已知条件“OB=OA=OC=AB,AB=BD”证得OD=3OC;然后根据(1)中切线的性质在直角三角形OCD中利用勾股定理求得OC的长度;最后利用等量代换、三角函数的定义知sin∠BCD=sin∠CAB==,从而求得CB的长度.
点评:本题考查了切线的判定与性质、勾股定理以及解直角三角形.证明过半径的外端点且垂直于这条半径的直线是圆的切线是常用的方法,求圆的半径常常用勾股定理,这些方法十分重要,要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE•EQ的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB为半⊙O的直径,直线MN与⊙O相切于C点,AE⊥MN于E,BF⊥MN于F.
求证:(1)AE+BF=AB;(2)EF2=4AE•BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB为⊙O的直径,直线l与⊙O相切于点D,AC⊥l于C,AC交⊙O于点E,DF⊥AB于F.
(1)图中哪条线段与BF相等?试证明你的结论;
(2)若AE=3,CD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.
(1)求证:BC=CF;
(2)若AD=6,DE=8,求BE的长;
(3)求证:AF+2DF=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼和浩特)如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.
(1)求证:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
35
,求PE的长.

查看答案和解析>>

同步练习册答案