分析 (1)首先连接BD,由在⊙O的内接四边形ABCD中,∠C=120°,根据圆的内接四边形的性质,∠BAD的度数,又由AB=AD,可证得△ABD是等边三角形,则可求得∠ABD=60°,再利用圆的内接四边形的性质,即可求得∠E的度数;
(2)首先连接OA,由∠ABD=60°,利用圆周角定理,即可求得∠AOD的度数,继而求得∠AOE的度数,继而求得答案.
解答 解:(1)连接BD,
∵四边形ABCD是⊙O的内接四边形,
∴∠BAD+∠C=180°,
∵∠C=120°,
∴∠BAD=60°,
∵AB=AD,
∴△ABD是等边三角形,
∴∠ABD=60°,
∵四边形ABDE是⊙O的内接四边形,
∴∠AED+∠ABD=180°,
∴∠AED=120°;
(2)连接OA,
∵∠ABD=60°,
∴∠AOD=2∠ABD=120°,
∵∠DOE=90°,
∴∠AOE=∠AOD-∠DOE=30°,
∴n=$\frac{360°}{30°}$=12.
点评 此题考查了圆的内接四边形的性质、圆周角定理以及等边三角形的判定与性质.注意准确作出辅助线是解此题的关键.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com