精英家教网 > 初中数学 > 题目详情
精英家教网如图,AB∥CD、AD∥CE,F、G分别是AC和FD的中点,过G的直线依次交AB、AD、CD、CE于点M、N、P、Q,
求证:MN+PQ=2PN.
分析:根据已知的平行线,可以通过延长已知线段构造平行四边形.根据平行四边形的性质得到比例线段,再根据等式的性质即可得出等量关系.
解答:精英家教网证明:延长BA、EC,设交点为O,则四边形OADC为平行四边形,
∵F是AC的中点,
∴DF的延长线必过O点,且
DG
OG
=
1
3

∵AB∥CD,
MN
PN
=
AN
DN

∵AD∥CE,
PQ
PN
=
CQ
DN

MN
PN
+
PQ
PN
=
AN
DN
+
CQ
DN
=
AN+CQ
DN

又∵
DN
OQ
=
DG
OG
=
1
3

∴OQ=3DN.
∴CQ=OQ-OC=3DN-OC=3DN-AD,AN=AD-DN.
∴AN+CQ=2DN.
MN
PN
+
PQ
PN
=
AN+CQ
DN
=2.
即MN+PQ=2PN.
点评:综合运用了平行四边形的性质和平行线分线段成比例定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB∥CD,AD与BC相交于点E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图,AB∥CD,P是BC上的一个动点,设∠CDP=∠1,∠CPD=∠2,请你猜想出∠1、∠2与∠B之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,∠1=58°,则∠2的度数是(  )

查看答案和解析>>

同步练习册答案