精英家教网 > 初中数学 > 题目详情
如图,已知直线y=-2x+4与x轴、y轴分别相交于A、C两点,抛物线y=-2x2+bx+c (a≠0)经过点A、C.

(1)求抛物线的解析式;
(2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;
(3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.
(1)y=-2x2+2x+4;(2)Q(0,4)或(1,4)或(,-4)或(,-4);(3)存在,点F坐标为(0,)时,点M的坐标为(),点F坐标为(0,-4)时,点M的坐标为(4,-4);点F坐标为(0,1),点M的坐标为(1,2).

试题分析:1)根据直线y=-2x+4求出点A、C的坐标,再利用待定系数法求二次函数解析式解答即可;
(2)根据抛物线解析式求出点P的坐标,过点P作PD⊥y轴于D,根据点P、C的坐标求出PD、CD,然后根据S△APC=S梯形APDO-S△AOC-S△PCD,列式求出△APC的面积,再根据抛物线解析式求出点B的坐标,从而得到AB的长度,然后利用三角形的面积公式求出△ABQ的点Q的纵坐标的值,然后代入抛物线求解即可得到点Q的坐标;
(3)根据点E在x轴上,根据点M在直线y=-2x+4上,设点M的坐标为(a,-2a+4),然后分①∠EMF=90°时,利用点M到坐标轴的距离相等列式求解即可;②∠MFE=90°时,根据等腰直角三角形的性质,点M的横坐标的长度等于纵坐标长度的一半,然后列式进行计算即可得解.
试题解析:(1)令x=0,则y=4,
令y=0,则-2x+4=0,解得x=2,
所以,点A(2,0),C(0,4),
∵抛物线y=-2x2+bx+c经过点A、C,

解得
∴抛物线的解析式为:y=-2x2+2x+4;
(2)∵y=-2x2+2x+4=-2(x-2+
∴点P的坐标为(),
如图,过点P作PD⊥y轴于D,

又∵C(0,4),
∴PD=,CD= ,
∴S△APC=S梯形APDO-S△AOC-S△PCD,
=×(+2)×-×2×4-××
=
=
令y=0,则-2x2+2x+4=0,
解得x1=-1,x2=2,
∴点B的坐标为(-1,0),
∴AB=2-(-1)=3,
设△ABQ的边AB上的高为h,
∵△ABQ的面积等于△APC面积的4倍,
×3h=4×
解得h=4,
∵4<
∴点Q可以在x轴的上方也可以在x轴的下方,
即点Q的纵坐标为4或-4,
当点Q的纵坐标为4时,-2x2+2x+4=4,
解得x1=0,x2=1,
此时,点Q的坐标为(0,4)或(1,4),
当点Q的纵坐标为-4时,-2x2+2x+4=-4,
解得x1=,x2=
此时点Q的坐标为(,-4)或(,-4)
综上所述,存在点Q(0,4)或(1,4)或(,-4)或(,-4);
(3)存在.
理由如下:如图,

∵点M在直线y=-2x+4上,
∴设点M的坐标为(a,-2a+4),
①∠EMF=90°时,∵△MEF是等腰直角三角形,
∴|a|=|-2a+4|,
即a=-2a+4或a=-(-2a+4),
解得a=或a=4,
∴点F坐标为(0,)时,点M的坐标为(),
点F坐标为(0,-4)时,点M的坐标为(4,-4);
②∠MFE=90°时,∵△MEF是等腰直角三角形,
∴|a|=|-2a+4|,
即a=(-2a+4),
解得a=1,
-2a+4=2×1=2,
此时,点F坐标为(0,1),点M的坐标为(1,2),
或a=(-2a+4),此时无解,
综上所述,点F坐标为(0,)时,点M的坐标为(),
点F坐标为(0,-4)时,点M的坐标为(4,-4);
点F坐标为(0,1),点M的坐标为(1,2).
考点: 二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图像一定不经过(    )
A.第一象限;B.第二象限;C.第三象限;D.第四象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形OABC在平面直角坐标系中的位置如图所示,OA=3,AB=2.抛物线y=ax2+bx+c(a≠0)经过点A和点B,与x轴分别交于点D、E(点D在点E左侧),且OE=1,则下列结论:①a>0;②c>3;③2a﹣b=0;④4a﹣2b+c=3;⑤连接AE、BD,则S梯形ABDE=9.
其中正确结论的个数为(  )

A. 1个         B.2个         C.3 个        D.4 个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果抛物线y=mx²+(m-3)x-m+2经过原点,那么m的值等于(  )
A.0;B.1;C.2;D.3.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

请写出一个二次函数,使它的图象满足下列两个条件:(1)开口向下;(2)与y轴的交点是(0,2) .你写出的函数表达式是                    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

图是二次函数y=ax2+bx+c的图象,则a、b、c满足
A.a>0,b>0,c>0B.a>0,b<0,c>0
C.a>0,b>0,c<0D.a>0,b<0,c<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个边长为3厘米的正方形,若它的边长增加厘米,面积随之增加平方厘米,则关于的函数解析式是    .(不写定义域)

查看答案和解析>>

同步练习册答案