精英家教网 > 初中数学 > 题目详情
已知:如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=
mx
 
(m≠0)
的图象交于二、四象限内的A、B两点,过A作AC⊥x轴于点C,连接OA、OB、BC.已知OC=4,tan∠OAC=2,点B的纵坐标为-6.
(1)求反比例函数和直线AB的解析式;
(2)求四边形OACB的面积.
分析:(1)由AC垂直于x轴,得到三角形ACO为直角三角形,由OC及tan∠OAC的值,利用锐角三角函数定义求出AC的长,确定出A的坐标,将A的坐标代入反比例函数解析式中确定出m的值,进而求出反比例解析式,将y=-6代入反比例解析式中求出x的值,确定出B的坐标,将A和B的坐标代入一次函数解析式中得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出一次函数解析式;
(2)四边形OABC的面积=三角形AOC的面积+三角形BOC的面积,而两三角形都为OC为底边,其高分别为A和B的纵坐标,利用三角形的面积公式求出即可.
解答:解:(1)∵AC⊥x轴,tan∠OAC=2,OC=4,
∴在Rt△ACO中,tan∠OAC=
OC
AC
=
4
AC
=2,
∴AC=2,
∴A(-4,2),
又反比例函数y2=
m
x
过A(-4,2),
∴m=-4×2=-8,
∴y2=-
8
x

∴当y=-6时,x=
4
3

∴B(
4
3
,-6),
将A和B坐标代入y1=kx+b中,得:
-4k+b=2
4
3
k+b=-6

解得:
k=-
3
2
b=-4

∴y1=-
3
2
x-4;
(2)S四边形OABC=S△AOC+S△BOC=
1
2
•OC•|yA|+
1
2
•OC•|yB|=
1
2
×2×4+
1
2
×4×6=16.
点评:此题考查了一次函数与反比例函数的交点问题,利用了待定系数法,待定系数法是数学中重要的思想方法,学生注意灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,过A作AC⊥x轴于点C.已精英家教网OA=
5
,OC=2AC
,且点B的纵坐标为-3.
(1)求点A的坐标及该反比例函数的解析式;
(2)求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•白云区一模)已知,如图,一次函数y=kx+b的图象与反比例函数y=
mx
的图象都经过点A(3,-2)和点B(n,6).
(1)n=
-1
-1

(2)求这两个函数的解析式;
(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y=kx+b的图象与反比例函数y=
m
x
的图象交于A、B两点,与x轴交于点C,OB=
10
tan∠BOC=
1
3

(1)求反比例函数的解析式;
(2)若BC=OC,求一次函数的解析式.
(3)直接写出当x<0时,kx+b-
m
x
>0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,过A作AC⊥x,轴于点C,已知OA=
5
,OC=2AC,且点B的纵坐标为-3,
(1)求点A的坐标;
(2)求该反比例函数的解析式;
(3)点B的坐标为
2
3
,-3)
2
3
,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y=kx+b的图象与y轴交于点A,且与正比例函数y=-x的图象交于点B,则该一次函数的解析式为
y=x+2
y=x+2
;不等式kx+b>-x的解集为
x>-1
x>-1

查看答案和解析>>

同步练习册答案