精英家教网 > 初中数学 > 题目详情

如图,直线AB,CD,EF相交于点O,则∠AOE+∠DOB+∠COF等于


  1. A.
    90°
  2. B.
    120°
  3. C.
    180°
  4. D.
    360°
C
试题分析:先根据对顶角相等可得∠AOC=∠DOB,再根据平角的定义可得∠AOE+∠AOC +∠COF=180°,即可得到∠AOE+∠DOB+∠COF的值。
∵∠AOC=∠DOB,∠AOE+∠AOC +∠COF=180°,
∴∠AOE+∠DOB+∠COF=180°,
故选C.
考点:本题考查的是对顶角,平角的定义
点评:解答本题的关键是掌握好对顶角的定义:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.一定要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点.反向延长线等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.
(1)图中∠AOF的余角是
 
(把符合条件的角都填出来).
(2)图中除直角相等外,还有相等的角,请写出三对:
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根据
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、完成推理填空:如图:直线AB、CD被EF所截,若已知AB∥CD,
求证:∠1=∠2.
请你认真完成下面填空.
证明:∵AB∥CD    (已知),
∴∠1=∠
3
( 两直线平行,
同位角相等
 )
又∵∠2=∠3,(
对顶角相等
 )
∴∠1=∠2 (
等量代换
 ).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度数=
33°
33°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB,CD相交于O点,EO⊥CD,垂足为O点,若∠BOE=50°,求∠AOD的度数.

查看答案和解析>>

同步练习册答案