
解:(1)①证明:∵AC=BC,∠ACB=90°,
∴∠A=∠B=45°,
又GD⊥AC,
∴∠ADG=90°,
在△ADG中,
∠A+∠ADG+∠AGD=180°,
∴∠AGD=45°,
∴∠A=∠AGD,
∴AD=DG,
又D是AC中点,
∴AD=DC,
∴DG=DC,
②由①DG=DC,
又∵DF=DE,
∴DF-DG=DC-DE,
即FG=CE,
由①∠AGD=45°,
∴∠HGF=180°-45°=135°,
又DE=DF,∠EDF=90°,
∴∠DEF=45°,
∴∠CEF=180°-45°=135°,
∴∠HGF=∠FEC,
又HF⊥CF,
∴∠HFC=90°,
∴∠GFH+∠DFC=180°-90°=90°,
又Rt△FDC中,
∠DFC+∠ECF=90°,
∴∠GFH=∠ECF,
在△FGH和△CEF中

,
∴△FGH≌△CEF(ASA),
∴FH=FC;
(2)如图所示,
△FHG≌△CFE,
不变,FH=FC.
分析:(1)①根据已知首先得出∠ADG=90°,进而求出AD=DG,得出DG=DC;
②利用已知首先得出∠GFH=∠ECF与∠HGF=∠FEC,再利用GF=EC得出△FGH≌△CEF,进而得出FH=FC;
(2)根据题意画出图形,再利用②中方法即可得出FH=FC.
点评:此题主要考查了全等三角形的证明以及利用已知画出图形,熟练掌握全等三角形的判定以及利用已知条件画出几何图形是考查重点.