精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c的顶点A(2,0),与y轴的交点为B(0,-1).
(1)求抛物线的解析式;
(2)在对称轴右侧的抛物线上找出一点C,使以BC为直径的圆经过抛物线的顶点A.并求出点C的坐标以及此时圆的圆心P点的坐标.
(3)在(2)的基础上,设直线x=t(0<t<10)与抛物线交于点N,当t为何值时,△BCN的面积最大,并求出最大值.

【答案】分析:(1)利用顶点式写出二次函数解析式,进而得出a的值,得出解析式即可;
(2)首先得出△AOB∽△CDA,进而得出y与x之间的函数关系,即可得出点C的坐标,根据PH=(OB+CD)求出P点坐标即可;
(3)首先设点N的坐标为(t,-t2+t-1),得出,求出直线BC的解析式,进而表示出M点坐标,即可得出△BCN与t的函数关系式,求出最值即可.
解答:解:(1)∵抛物线的顶点是A(2,0),
设抛物线的解析式为y=a(x-2)2
由抛物线过B(0,-1)得:4a=-1,

∴抛物线的解析式为


(2)如图1,设C的坐标为(x,y).
∵A在以BC为直径的圆上.∴∠BAC=90°.
作CD⊥x轴于D,连接AB、AC.
∵∠OAB+∠DAC=90°,∠OAB+∠ABO=90°,
∴∠ABO=∠CAD,
∵∠BOA=∠ADC=90°,
∴△AOB∽△CDA,

∴OB•CD=OA•AD.
即1•|y|=2(x-2).∴|y|=2x-4.
∵点C在第四象限.
∴y=-2x+4,

解得
∵点C在对称轴右侧的抛物线上.
∴点C的坐标为 (10,-16),
∵P为圆心,∴P为BC中点.
取OD中点H,连PH,则PH为梯形OBCD的中位线.
∴PH=(OB+CD)=
∵D(10,0)∴H(5,0)
∴P (5,-).
故点P坐标为(5,-).

(3)如图2,设点N的坐标为(t,-t2+t-1),直线x=t(0<t<10)与直线BC交于点M.

所以
设直线BC的解析式为y=kx+b,直线BC经过B(0,-1)、C (10,-16),
所以成立,
解得:
所以直线BC的解析式为,则点M的坐标为(t,-t-1),
MN==

=
=
所以,当t=5时,S△BCN有最大值,最大值是
点评:此题主要考查了二次函数的综合应用以及待定系数法求一次函数解析式和相似三角形的判定与性质等知识,根据已知利用数形结合得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案