精英家教网 > 初中数学 > 题目详情

如图,已知OA=2数学公式,∠α=45°,点B的坐标为(3,3).
求:(1)点A的坐标;
(2)直线AB的解析式;
(3)△AOB的外接圆半径.

解:过A、B分别作x轴的垂线,垂足分别为C、D,如图

(1)∵OA=2,∠α=45°,
∴△OAC为等腰直角三角形,
∴AC=OC=OA=2,
∴点A的坐标为(-2,2);

(2)设直线AB的解析式为y=kx+b,
把A(-2,2)和点B(3,3)代入得,-2k+b=2,3k+b=3,解得k=,b=
∴直线AB的解析式为y=x+

(3)∵点B的坐标为(3,3),
∴△ODB为等腰直角三角形,
∴∠BOD=45°,OB=OD=3
∴∠AOB=180°-45°-45°=90°,即△AOB为直角三角形,
∴AB==
∴△AOB的外接圆半径==
分析:过A、B分别作x轴的垂线,垂足分别为C、D.
(1)由OA=2,∠α=45°,可判断△OAC为等腰直角三角形,根据其性质得到AC=OC=OA=2,即可写出A点坐标;
(2)利用待定系数法求直线AB的解析式:设直线AB的解析式为y=kx+b,把A(-2,2)和点B(3,3)代入得,-2k+b=2,3k+b=3,解此两方程组成的方程组求出k和b即可;
(3)易得△ODB为等腰直角三角形,得到OB=OD=3,则有△AOB为直角三角形,然后利用勾股定理计算出AB,根据直角三角形的斜边就是其外接圆的直径可得到△AOB的外接圆半径.
点评:本题考查了利用待定系数法求直线的解析式的方法:先设直线的解析式为y=kx+b,然后把已知两点的坐标代入求出k,b即可.也考查了点的坐标与线段的关系以及等腰直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知OA=OB,那么数轴上点A与点C的距离是
 
个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,已知OA∥CD,OB∥CD,那么∠AOB是平角,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为(  )
A、y=-
9
3
x
B、y=
9
3
x
C、y=
9
x
D、y=-
9
x

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知OA平分∠BAC,∠1=∠2,求证:△AOB≌△AOC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△OA′B′是△OAB绕点O逆时针旋转60°得到的,那么△OA′B′与△OAB的关系是
全等
全等
;如果∠AB=30°,∠B=50°,则∠A′OB′=
30°
30°
,∠AOB′=
90°
90°

查看答案和解析>>

同步练习册答案