【题目】如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;(2)求DF的值;(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小
【答案】(1)、证明过程见解析;(2)、DF=;(3)、PF=
【解析】
试题分析:(1)、根据矩形的可得AD=BC,AB=CD,根据折叠图形可得BC=EC,AE=AB,则可得AD=CE,AE=CD,从而得到三角形全等;(2)、设DF=x,则AF=CF=4-x,根据Rt△ADF的勾股定理求出x的值;(3)、根据菱形的性质进行求解.
试题解析:(1)、∵矩形ABCD ∴AD=BC,AB=CD,AB∥CD ∴∠ACD=∠CAB
∵△AEC由△ABC翻折得到 ∴AB=AE,BC=EC, ∠CAE=∠CAB ∴AD=CE,DC=EA,∠ACD=∠CAE,
在△ADE与△CED中 ∴△DEC≌△EDA(SSS);
(2)、如图1,∵∠ACD=∠CAE, ∴AF=CF, 设DF=x,则AF=CF=4﹣x,
在RT△ADF中,AD2+DF2=AF2, 即32+x2=(4﹣x)2, 解得;x=, 即DF=.
(3)、四边形APCF为菱形 设AC、FP相较于点O ∵FP⊥AC ∴∠AOF=∠AOP
又∵∠CAE=∠CAB, ∴∠APF=∠AFP ∴AF=AP ∴FC=AP
又∵AB∥CD ∴四边形APCF是平行四边形 又∵FP⊥AC ∴四边形APCF为菱形 PF=
科目:初中数学 来源: 题型:
【题目】下列图形是全等三角形的是( )
A.两个含60°角的直角三角形
B.腰对应相等的两个等腰直角三角形
C.边长为3和4的两个等腰三角形
D.一个钝角相等的两个等腰三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把多项式x2+ax+b分解因式,得(x﹣1)(x+3),则a,b的值分别是( )
A.a=2,b=3
B.a=2,b=﹣3
C.a=﹣2,b=3
D.a=﹣2,b=﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 ________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解中学生参加体育活动情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项(每个时间段含最小值不含最大值):
A.1.5小时以上 B.1—1.5小时 C.0.5 —1小时 D.0.5小时以下
根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:
(1)本次调查活动采取了 的调查方式.(填“普查”或“抽样调查”)
(2)本次调查共调查了________人,图(2)中选项C的圆心角为 ______度.
(3)请将图(1)中选项B的部分补充完整.
(4)若该校有2000名学生,你估计该校可能有_______名学生平均每天参加体育活动的时间在1小时以下.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com