精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程组的解,点C是直线与直线AB的交点,点D在线段OC上,OD=
(1)求点C的坐标;
(2)求直线AD的解析式;
(3)P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
(1) (3,6) (2) y="-x+6" (3)  Q1(-3,3) Q2(3,-3) Q3(3,-3) Q4(6,6)
解:(1)OA=6,OB=12  ……………………………………………………………1分
直线AB……………………………………1分
联立……………………………………2分
∴ 点C的坐标为(3,6)……………………………………………………1分
(2)
点D的坐标为(2,4)……………………………………………………1分
设直线AD的解析式为y=kx+b.
把A(6,0),D(2,4)代人得……………………………………1分
解得
∴ 直线AD的解析式为y=-x+6  ………………………………………1分
(3)存在.
Q1(-3,3)……………………………………………………………1分
Q2(3,-3)………………………………………………………………1分
Q3(3,-3)  …………………………………………………………………1分
Q4(6,6)  ……………………………………………………………………1分
(1)设直线AB的解析为y=kx+b,解方程组方程组 2x=y,x-y="6" ,得到的解即为OA,OB的长度,进而知道A和B的坐标,再把其横纵坐标分别代入求出k和b的值即可;把求出的解析式和直线y=2x联立解方程组,方程组的解即为点C的坐标;
(2)要求直线AD的解析式,需求出D的坐标,因为点D在直线OC上因此可设D(a,2a),又因为OD=,由勾股定理可求出a的值,从而求得点D的坐标,把A、D的坐标代入,利用方程组即可求解;
(3)由(2)中D的坐标可知,DF=AF=4,所以∠OAD=45°,因为以O、A、P、Q为顶点的四边形是菱形,所以需分情况讨论:若P在x轴上方,OAPQ是菱形,则PQ∥OA,PQ=OA=6=AP,过P作PM⊥x轴,因为∠OAD=45°,利用三角函数可求出PM=AM=,OM=6-,即P(6- , ),所以Q的横坐标为6--6=-,Q1(- );若P在x轴下方,OAPQ是菱形,则PQ∥OA,PQ=OA=6=AP.过P作PM⊥x轴,因为∠MAP=∠OAD=45°,利用三角函数可求出PM=AM=,OM=6+,即P(6+,-),所以Q的横坐标为6+-6=,Q2,-);若Q在x轴上方,OAQP是菱形,则∠OAQ=2∠OAD=90°,所以此时OAQP是正方形.又因正方形边长为6,所以此时Q(6,6);若Q在x轴下方,OPAQ是菱形,则∠PAQ=2∠OAD=90°,所以此时OPAQ是正方形.又因正方形对角线为6,由正方形的对称性可得Q(3,-3).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如果一次函数y=xb经过点A(0,3),那么b=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线轴、轴分别相交于点 、.抛物线轴的正半轴相交于点,与这个一次函数的图像相交于,且

(1)求点 、的坐标;
(2)如果,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.
(1)求m的值;
(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,0c,DC于点E,F,G.设线段EG的长为d,求d与t之间的函数关系式 (直接写出自变量t的取值范围); (3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO.求此时t的值及点H的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,是在同一坐标系内作出的一次函数y1、y2的图象l1、l2,设y1=k1x+b1,y2=k2x+b2,则方程组的解是_______.
A、     B、C、     D、

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

重庆市的重大惠民工程——公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积 (单位:百万平方米),与时间的关系是,(单位:年,为整数);后4年,每年竣工投入使用的公租房面积 (单位:百万平方米),与时间的关系是单位:年,为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第年投入使用的公租房的租金z(单位:元/m2)与时间(单位:年,为整数)满足一次函数关系如下表:
z(元/m2
50
52
54
56
58
...
(年)
1
2
3
4
5
...
(1)求出z与的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
 
型利润
型利润
甲店
200
170
乙店
160
150
 
(1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;
(2)若公司要求总利润不低于17560元,有多少种不同分配方案,哪种方案总利润最大,并求出最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

函数y=k(x-k) (k<0 )的图象不经过(   )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,一次函数的图像交于点A(-1,m)
⑴求出m,b的值;
⑵求出这两条直线与x轴围成的图形的面积。

查看答案和解析>>

同步练习册答案