精英家教网 > 初中数学 > 题目详情

作业宝如图,锐角三角形纸片ABC中,∠A=50°,D为AC边的中点,现将纸片沿过点D的直线折叠,折痕与BC交于点E,点C的落点记为F,若点F恰好在AB边上,则∠ADF=________.

80°
分析:由D为AC边的中点得到AD=DC,再根据折叠的性质得DF=DC,则∠AFD=∠A=50°,然后根据三角形内角和定理计算∠ADF.
解答:∵D为AC边的中点,
∴AD=DC,
∵纸片沿过点D的直线折叠,折痕与BC交于点E,点C的落点记为F,点F恰好在AB边上,
∴DF=DC,
∴∠AFD=∠A=50°,
∴∠ADF=180°-∠AFD-∠A=80°.
故答案为80°.
点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、我们知道:在三角形中,有一个角是钝角的三角形叫做钝角三角形;有一个角是直角的叫做直角三角形;三个角都是锐角的三角形叫做锐角三角形
如图是锐角三角形ABC的纸片,用剪刀将它剪成n(n≥2)个小三角形(这些小三角形仍可以拼回原三角形)
(1)当n=2时,这2个三角形按角分类可以有多少种可能?将所有可能在备用图中一一画出,并填入相应的数字:(不一定将备用图全部用完)

(2)当n=3时,这3个三角形按角分类可以有8种可能,将所有可能按指定的位置在图中一一画出

(3)当n=4时,这4个三角形可以全部是钝角三角形,直角三角形,锐角三角形,将她们分别在图中一一画出.

查看答案和解析>>

科目:初中数学 来源: 题型:

同学们,在学习了轴对称变换后我们经常会遇到三角形中的“折叠”问题.我们通常会考虑到折叠前与折叠后的图形全等,并利用全等的性质,即对应角相等,对应边相等来研究解决数学中的“折叠”问题.
(1)如图①,把△ABC纸片沿DE折叠,当点A落在△ABC内部时,我们不仅可以发现AE=A′E,AD=
 
,而且我们还可以通过发现∠AED=∠A′ED,∠ADE=∠
 
,∠A=∠A′,从而求得∠1+∠2=2∠A.
(2)如图②,当点A落在△ABC外部时,我们发现∠2=∠DFA+∠
 
,∠DFA=∠1+∠
 
,那么(1)中的∠1+∠2=2∠A在这里还成立吗?如成立,请说明理由.如不成立,请写出成立的式子并说明理由.
(3)已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,请你模仿图①,图②,画出相应的示意图并求出△CDE的周长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们知道:在三角形中,有一个角是钝角的三角形叫做钝角三角形;有一个角是直角的叫做直角三角形;三个角都是锐角的三角形叫做锐角三角形
如图是锐角三角形ABC的纸片,用剪刀将它剪成n(n≥2)个小三角形(这些小三角形仍可以拼回原三角形)
(1)当n=2时,这2个三角形按角分类可以有多少种可能?将所有可能在备用图中一一画出,并填入相应的数字:(不一定将备用图全部用完)

(2)当n=3时,这3个三角形按角分类可以有8种可能,将所有可能按指定的位置在图中一一画出

(3)当n=4时,这4个三角形可以全部是钝角三角形,直角三角形,锐角三角形,将她们分别在图中一一画出.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道:在三角形中,有一个角是钝角的三角形叫做钝角三角形;有一个角是直角的叫做直角三角形;三个角都是锐角的三角形叫做锐角三角形
如图是锐角三角形ABC的纸片,用剪刀将它剪成n(n≥2)个小三角形(这些小三角形仍可以拼回原三角形)
(1)当n=2时,这2个三角形按角分类可以有多少种可能?将所有可能在备用图中一一画出,并填入相应的数字:(不一定将备用图全部用完)

精英家教网

(2)当n=3时,这3个三角形按角分类可以有8种可能,将所有可能按指定的位置在图中一一画出

精英家教网

(3)当n=4时,这4个三角形可以全部是钝角三角形,直角三角形,锐角三角形,将她们分别在图中一一画出.

精英家教网

查看答案和解析>>

同步练习册答案