精英家教网 > 初中数学 > 题目详情
如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒
3
个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.
(1)当t为何值时,点M与点O重合;
(2)求点P坐标和等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
精英家教网
分析:(1)当M,O重合时,△PON是等边三角形,因此∠AMP=30°,OA=2AP,可根据OB的长和∠OAB的度数求出OA的长,即可求出AP的长,然后根据P点的速度即可求出t的值.
(2)可通过构建直角三角形求解.过P分别作PQ⊥OA于点Q,PS⊥OB于点S.可在直角三角形APQ中,用AP的长和∠OQP的度数求出AQ的长,也就求出了OQ和PS的长,然后在直角三角形PSM中,可根据PS的长和∠PMN的度数求出等边三角形PMN的边长.
(3)本题要分两种情况进行讨论:
①当F点在PM右侧时,即当0≤t≤1时,重合部分是个直角梯形.
②当PM和PN都与线段EF相交时,即当1<t≤2时,重合部分是个五边形,设PM,PN与EF的交点分别为I,G,那么重合部分的面积可用梯形FGNO的面积-三角形FQI的面积来求得.
可根据上述两种情况求出S,t的函数关系式.根据函数的性质和自变量的取值范围即可求得S的最大值及对应的t的值.
解答:精英家教网解:(1)点M与点O重合.
∵△ABC是等边三角形,
∴∠ABO=30°,∠BAO=60°.
由OB=12,
∴AB=8
3
,AO=4
3

∵△PON是等边三角形,
∴∠PON=60度.
∴∠AOP=30度.
∴AO=2AP,即4
3
=2
3
t,
解得t=2.
∴当t=2时,点M与点O重合.

(2)如图①,过P分别作PQ⊥OA于点Q,PS⊥OB于点S,精英家教网
可求得AQ=
1
2
AP=
3
t
2
,PS=QO=OA-AQ=4
3
-
3
t
2

QP=AQcos30°=
3
×
3
2
t
=
3
2
t.
∴点P坐标为(
3
2
t
,4
3
-
3
t
2
).
在Rt△PMS中,sin60°=
PS
PM

∴PM=(4
3
-
3
t
2
)÷
3
2
=8-t.

(3)(Ⅰ)当0≤t≤1时,见图②.
设PN交EF于点G,
∵PM过F点时,OD⊥ED,ED∥FO而D为OB的中点,
∴E是AB的中点,
∵EF∥OD,
∴F也是AO的中点,
∴△FMO≌△AFP,
∴∠FMO=∠PAF=60°,
则重叠部分为直角梯形FONG,
作GH⊥OB于点H.
∵∠GNH=60°,GH=2
3

∴HN=2.
∵MP=8-t,
∴BM=2MP=16-2t.
∴OM=BM-OB=16-2t-12=4-2t.
∴ON=MN-OM=8-t-(4-2t)=4+t.
∴FG=OH=ON-HN=4+t-2=2+t.
∴S=
1
2
(2+t+4+t)×2
3
=2
3
t+6
3
精英家教网
∵S随t的增大而增大,
∴当t=1时,S最大=8
3

(Ⅱ)当1<t≤2时,见图③.
设PM交EF于点I,交FO于点Q,PN交EF于点G.
重叠部分为五边形OQIGN.
OQ=4
3
-2
3
t,FQ=2
3
-(4
3
-2
3
t)=2
3
t-2
3
,FI=
3
3
FQ=2t-2.
精英家教网∴三角形QFI的面积=
1
2
(2
3
t-2
3
)(2t-2)=2
3
(t2-2t+1).
由(Ⅰ)可知梯形OFGN的面积=2
3
t+6
3

∴S=2
3
t+6
3
-2
3
(t2-2t+1)=-2
3
(t2-3t-2).
∵-2
3
<0,
∴当t=
3
2
时,S有最大值,S最大=
17
3
2

综上所述:当0≤t≤1时,S=2
3
t+6
3
;当1<t≤2时,S=-2
3
t2+6
3
t+4
3

17
3
2
>8
3

∴S的最大值是
17
3
2
点评:本题考查了等边三角形的性质、直角三角形的性质、图形的面积求法、二次函数的应用等知识点,及综合应用知识、解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,将一块腰长为2
2
cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为
(-3,2
2
(-3,2
2
,点B的坐为
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059

学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)

(1)按照这种规定填写下表:

(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.

(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题

阅读下面的材料:

小明在研究中心对称问题时发现:

如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.

如图2,当点为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.

(1)请在图2中画出点, 小明在证明P、两点关于点中心对称时,除了说明P、三点共线之外,还需证明;

(2)如图3,在平面直角坐标系xOy中,当为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),
(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作______.

查看答案和解析>>

同步练习册答案