精英家教网 > 初中数学 > 题目详情
(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.
(1)求证:∠BCA=∠BAD;
(2)求DE的长;
(3)求证:BE是⊙O的切线.
分析:(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;
(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.
(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.
解答:(1)证明:∵BD=BA,
∴∠BDA=∠BAD,
∵∠BCA=∠BDA(圆周角定理),
∴∠BCA=∠BAD.

(2)解:∵∠BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,
∴△BED∽△CBA,
BD
AC
=
DE
AB
,即
12
13
=
DE
12

解得:DE=
144
13


(3)证明:连结OB,OD,

在△ABO和△DBO中,
AB=DB
BO=BO
OA=OD

∴△ABO≌△DBO(SSS),
∴∠DBO=∠ABO,
∵∠ABO=∠OAB=∠BDC,
∴∠DBO=∠BDC,
∴OB∥ED,
∵BE⊥ED,
∴EB⊥BO,
∴OB⊥BE,
∴BE是⊙O的切线.
点评:本题考查了切线的判定及圆周角定理的知识,综合考查的知识点较多,解答本题要求同学们熟练掌握一些定理的内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•汕头)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是
8
8
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•汕头)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是
平行四边形
平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•汕头)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•汕头)如图,已知?ABCD.
(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.

查看答案和解析>>

同步练习册答案