精英家教网 > 初中数学 > 题目详情
(2002•青海)为了保证2002年5月12日-5月16日中国•青海郁金香节的顺利进行.省园林局特设置甲、乙两个郁金香幼苗培育基地,准备将这些幼苗移置到面积约为48000m2的土地上(每间隔0.2m种植一株),并要求甲培育的株数是乙培育株数的2倍.问甲、乙两地各培育多少株才能满足要求?
【答案】分析:根据每间隔0.2m种植一株,知1平方米的面积可以种植25株.设甲、乙两地各培育x株,y株才能满足要求.根据甲培育的株数是乙培育株数的2倍和准备将这些幼苗移置到面积约为48000m2的土地上进行列方程组求解.
解答:解:设甲、乙两地各培育x株,y株才能满足要求.
根据题意得:
解得:
答:甲、乙两地各培育800000株,400000株才能满足要求.
点评:此题的关键是能够正确分析出1平方米的面积可以种植25株,从而根据面积知道共需的株数列方程.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2002•青海)如图,已知二次函数y=ax2+bx+c的图象经过原点O,并且与一次函数y=kx+4的图象相交于A(1,3),B(2,2)两点.
(1)分别求出一次函数、二次函数的解析式;
(2)若C为x轴上一点,问:在x轴上方的抛物线上是否存在点D,使S△COD=S△OCB?若存在,请求出所有满足条件的D点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年青海省中考数学试卷(解析版) 题型:解答题

(2002•青海)如图,已知二次函数y=ax2+bx+c的图象经过原点O,并且与一次函数y=kx+4的图象相交于A(1,3),B(2,2)两点.
(1)分别求出一次函数、二次函数的解析式;
(2)若C为x轴上一点,问:在x轴上方的抛物线上是否存在点D,使S△COD=S△OCB?若存在,请求出所有满足条件的D点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年河南省中考数学模拟试卷(01)(解析版) 题型:选择题

(2002•青海)如图,过反比例函数y=(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得( )

A.S1>S2
B.S1=S2
C.Sl<S2
D.大小关系不能确定

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《反比例函数》(01)(解析版) 题型:选择题

(2002•青海)如图,过反比例函数y=(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得( )

A.S1>S2
B.S1=S2
C.Sl<S2
D.大小关系不能确定

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(03)(解析版) 题型:解答题

(2002•青海)已知:如图,矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),∠OAB=60°,以AB为轴对折后,使C点落在D点处,求D点坐标.

查看答案和解析>>

同步练习册答案