精英家教网 > 初中数学 > 题目详情

如图,在直角坐标系中,A(-1,0),B(0,2),一动点P沿过B点且垂直于AB的射线BM运动,P点的运动速度为每秒1个单位长度,射线BM与x轴交于点C.
(1)求点C的坐标.
(2)求过点A、B、C三点的抛物线的解析式.
(3)若P点开始运动时,Q点也同时从C点出发,以P点相同的速度沿x轴负方向向点A运动,t秒后,以P、Q、C为顶点的三角形是等腰三角形.(点P到点C时停止运动,点Q也同时停止运动),求t的值.
(4)在(2)(3)的条件下,当CQ=CP时,求直线OP与抛物线的交点坐标.

解:(1)∵A(-1,0),B(0,2),
∴OA=1,OB=2,OB=2OA;
∵∠ABC=90°,易得△ABO∽△BCO,
∴AO:BO=BO:OC,即OC=2OB=4,
∴C(4,0).

(2)设抛物线方程为y=ax2+bx+c(a≠0),依题意有:

解得
∴抛物线的解析式为y=-x2+x+2.

(3)∵OB=2,OC=4,
∴BC=2
则:BP=t,CP=2-t,CQ=t;
①CP=CQ,则有:2-t=t,
解得:t=
②CQ=QP,过Q作QM′⊥BC于M′,则有:
CM′=(2-t);
易证△CQM′∽△CBO,
则:=

解得:t==
③CP=PQ,过P作PN⊥OC于N,则:
CN=CQ=t;
易证△CNP∽△COB,则有:

解得t==
综上所述,当t=时,以P、Q、C为顶点的三角形是等腰三角形.

(4)由(3)知:当CP=CQ时,BP=t==BC,即P是BC的中点,
∵B(0,2),C(4,0),
∴P(2,1);
∴直线OP的解析式为:y=x;
联立抛物线的解析式有:

解得
∴直线OP与抛物线的交点为(1+),(1-).
分析:(1)由于AB⊥BC,则△AOB∽△BOC,由于OB=2OA,则OC=2OB,由此可求出C点的坐标.
(2)设抛物线方程为y=ax2+bx+c(a≠0),三点代入联立方程解出a、b、c.
(3)根据P、Q的速度,可用t表示出BP、CP、CQ的长,若以P、Q、C为顶点的三角形是等腰三角形,那么可分作三种情况考虑:
①CP=CQ,可联立CP、CQ的表达式,可得到关于t的等量关系式,即可求出此时t的值;
②CQ=QP,过Q作QM⊥BC于M,根据等腰三角形的性质知CM=CP,可通过△CQM∽△CBO所得比例线段,列出关于t的等量关系式,求出此时t的值;
③CP=PQ,过P作PN⊥OC于N,方法与②相同.
(4)在(2)题中已经求得CP=CQ时的t值,此时发现P是BC的中点,根据B、C的坐标,即可得到P点的坐标,易求得直线OP的解析式,联立抛物线的解析式可求出它与抛物线的交点坐标.
点评:此题是二次函数的综合题,主要考查了相似三角形的性质、二次函数解析式的确定、函数图象交点坐标的求法以及等腰三角形的构成条件等重要知识,在等腰三角形腰和底不确定的情况下,一定要分类讨论,以免漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案