精英家教网 > 初中数学 > 题目详情

如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点A作AB⊥OA,交y轴于点B,设点A的横坐标为n.

【探究】:
(1)当n=1时,点B的纵坐标是  
(2)当n=2时,点B的纵坐标是  
(3)点B的纵坐标是  (用含n的代数式表示).
【应用】:
如图②,将△OAB绕着斜边OB的中点顺时针旋转180°,得到△BCO.
(1)求点C的坐标(用含n的代数式表示);
(2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是  

探究:(1)2,(2)5,(3) n2+1 应用:(1)(﹣n,1),(2)2.

解析试题分析:探究;依据直角三角形的射影定理即可求得B点的坐标.
应用:(1)依据全等三角形的性质即可求得C点的坐标,(2)通过(1)可求得C1、C2的坐标,从而得出矩形面积和三角形的面积,最后求得当1≤n≤5时,线段OC扫过的图形的面积.

试题解析:
探究(3)如图1所示:设点A的横坐标为n,点A是抛物线y=x2在第一象限上的一个点;
∴A(n,n2);
∴AD=n,OD=n2
在Rt△ACB中,AD2=OD•BD;
设B点的纵坐标为y1,则n2=n2•(y1﹣n2),
解得:y1=n2+1,
∴点B的纵坐标是 n2+1.

应用:(1)点B的纵坐标是 n2+1,A点的纵坐标是n2
∴BD=1,
根据旋转的定义可知CE=AD=n,OE=BD=1;
∴C点的坐标为:(﹣n,1);
(2)当n=1时C点的坐标为C1(﹣1,1),当n=5时C点的坐标为C2(﹣5,1),如上图所示;
S=S﹣S=×1×5﹣×1×1=2.
∴当1≤n≤5时,线段OC扫过的图形的面积是2.
考点:二次函数综合题

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

若将抛物线y=3x2+1向下平移1个单位后,则所得新抛物线的解析式是        

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

今年,6月12日为端午节。在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。请根据小丽提供的信息,解答小华和小明提出的问题。

(1)小华的问题解答:    
(2)小明的问题解答:    

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

有一个二次函数的图象,三位学生分别说出了它的一些特点.
甲:对称轴是直线x=4;
乙:与x轴两交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3;
请写出满足上述全部特点的二次函数解析式:          

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于x的方程mx2﹣3(m+1)x+2m+3=0.
(1)求证:无论m取任何实数,该方程总有实数根;
(2)若m≠0,抛物线y=mx2﹣3(m+1)x+2m+3与x轴的交点到原点的距离小于2,且交点的横坐标是整数,求m的整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,经过原点的抛物线y=-x2+bx(b>2)与x轴的另一交点为A,过点P(1,)作直线PN⊥x轴于点N,交抛物线于点B.点B关于抛物线对称轴的对称点为C.连结CB,CP.
(1)当b=4时,求点A的坐标及BC的长;
(2)连结CA,求b的适当的值,使得CA⊥CP;
(3)当b=6时,如图2,将△CBP绕着点C按逆时针方向旋转,得到△CB′P′,CP与抛物线对称轴的交点为E,点M为线段B′P′(包含端点)上任意一点,请直接写出线段EM长度的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某种上屏每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图.
(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?
(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线过点轴正半轴上的动点,的垂直平分线交于点,交轴于点
(1)直接写出直线的解析式;
(2)当时,设的面积为,求S关于t的函数关系式;并求出S的最大值;
(3)当点Q在线段AB上(Q与A、B不重合)时,直线过点A且与x轴平行,问在上是否存在点C,使得是以为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.
(1)试用含m的代数式表示A、B两点的坐标;
(2)当点B在原点的右侧,点C在原点的下方时,若是等腰三角形,求抛物线的解析式;
(3)已知一次函数,点P(n,0)是x轴上一个动点,在(2)的条件下,过点P作垂直于x轴的直线交这个一次函数的图象于点M,交抛物线于点N,若只有当时,点M位于点N的下方,求这个一次函数的解析式.

查看答案和解析>>

同步练习册答案