精英家教网 > 初中数学 > 题目详情
以O为圆心,1为半径的圆内有一定点A,过A引互相垂直的弦PQ,RS.求PQ+RS的最大值和最小值.
分析:设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),由勾股定理得出x,y,a的关系,再由垂径定理PQ和RS,最后由完全平方公式求得最大值和最小值.
解答:精英家教网解:如图,设OA=a(定值),
过O作OB⊥PQ,OC⊥RS,B、C为垂足,
设OB=x,OC=y,0≤x≤a,(0≤y≤a),
且x2+y2=a2
所以PQ=2PB=2
1-x2

RS=2(
1-x2
+
1-y2
).
所以PQ+RS=2(
1-x2
-
1-y2
).
∴(PQ+RS)2=4(2-a2+2
1-a2+x2y2

而x2y2=x2(a2-x2)=-(x2-
a2
2
2+
a4
4

当x2=
a2
2
时,
(x2y2)最大值=
a4
4

此时PQ+RS=
4(2-a2+2-a2)

当x2=0或x2=a2时,(x2y2最小值=0,
此时(PQ+RS)最小值=2(1+
1-a2
).
点评:本题综合考查了垂径定理和勾股定理,以及完全平方公式的应用.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE的延长线交⊙A于F,CM=2,AB=4.(1)求⊙A的半径;(2)求CE的长和△AFC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,点D、E从点C同时出发,分别以1cm/s和2cm/s的速度沿着射线CB向右移动,以DE为一边在直线BC的上方作等边△DEF,连接CF,设点D、E运动的时间为t秒.
(1)△DEF的边长为
 
(用含有t的代数式表示),当t=
 
秒时,点F落在AB上;
(2)t为何值时,以点A为圆心,AF为半径的圆与△CDF的边所在的直线相切?
(3)设点F关于直线AB的对称点为G,在△DEF运动过程中,是否存在某一时刻t,使得以A、C、E、G为顶点的四边形为梯形?若存在,请直接写出t的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系xOy中,O是坐标原点,点A在x正半轴上,OA=12
3
cm,点B在y轴的正半轴上,OB=12cm,动点P从点A开始沿AO以2
3
cm/s的速度向点O移动,移动时间为t s(0<t<6).
(1)求∠OAB的度数;
(2)以OB为直径的⊙O′与AB交于点M,当t为何值时,PM与⊙O′相切?
(3)动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从A、A、B同时移动,当t=4s时,试说明四边形BRPQ为菱形;
(4)在(3)的条件下,以R为圆心,r为半径作⊙R,当r不断变化时,⊙R与菱形BRPQ各边的交点个数将发生变化,随当交点个数发生变化时,请直接写出r的对应值或取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,点D、E从点C同时出发,分别以1cm/s和2cm/s的速度沿着射线CB向右移动,以DE为一边在直线BC的上方作等边△DEF,连接CF,设点D、E运动的时间为t秒.
(1)△DEF的边长为______(用含有t的代数式表示),当t=______秒时,点F落在AB上;
(2)t为何值时,以点A为圆心,AF为半径的圆与△CDF的边所在的直线相切?
(3)设点F关于直线AB的对称点为G,在△DEF运动过程中,是否存在某一时刻t,使得以A、C、E、G为顶点的四边形为梯形?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省无锡市江南中学中考数学二模试卷(解析版) 题型:解答题

如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,点D、E从点C同时出发,分别以1cm/s和2cm/s的速度沿着射线CB向右移动,以DE为一边在直线BC的上方作等边△DEF,连接CF,设点D、E运动的时间为t秒.
(1)△DEF的边长为______(用含有t的代数式表示),当t=______秒时,点F落在AB上;
(2)t为何值时,以点A为圆心,AF为半径的圆与△CDF的边所在的直线相切?
(3)设点F关于直线AB的对称点为G,在△DEF运动过程中,是否存在某一时刻t,使得以A、C、E、G为顶点的四边形为梯形?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案