精英家教网 > 初中数学 > 题目详情
27、将图1,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.

(1)如图2,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图2中画出折痕;
(2)如图3,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是
三角形一边长与该边上的高相等

(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是
对角线互相垂直
分析:(1)图2中将三角形的三个角分别向三角形内部进行折叠即可;
(2)图3中只要使三角形一边上的高等于该边长即可;
(3)利用折叠后的两个重合的正方形可知,三角形一边长的一半和这一边上的高的一半都等于正方形的边长,所以三角形的一边和这边上的高应该相等;
(4)如果一个四边形能折叠成叠加矩形,可以将四边形的四个角分别向四边形内部折叠即可得到该结果,折痕应经过四边中点,而连接四边形各边中点得到矩形的话,该四边形的对角线应互相垂直.
解答:解:(1)(1分)
(2)分)
(3)三角形的一边长与该边上的高相等;(3分)
(4)对角线互相垂直.(注:回答菱形、正方形不给分)(5分)
点评:这是道操作题,一方面考查了学生的动手操作能力,另一方面考查了学生的空间想像能力,重视知识的发生过程,让学生体验学习的过程.在操作的过程中,应善于分析图形,结合中点即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长分别为1和2,另一种纸片的两条直角边长都为2.图a、图b、图c是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请用三种方法将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,三种方法所拼得的平行四边形(非矩形)的周长互不相等,并把你所拼得的图形按实际大小画在图a、图b、图c的方格纸上.
要求:(1)所画图形各顶点必须与方格纸中的小正方形顶点重合;
(2)画图时,要保留四块直角三角形纸片的拼接痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、将一张正方形纸片ABCD按下图所示的方式连续折叠三次,折叠后再按图中所示沿MN剪裁,则可得到(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

28、小丽剪了一些直角三角形纸片,她取出其中的几张进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.
(1)如果AC=6cm,BC=8cm,试求△ACD的周长.
(2)如果∠CAD:∠BAD=4:7,求∠B的度数.
操作二:如图2,小丽拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,已知两直角边AC=4cm,BC=8cm,你能求出CD的长吗?
操作三:如图3,小丽又拿出另一张Rt△ABC纸片,将纸片折叠,折痕CD⊥AB.你能证明:BC2+AD2=AC2+BD2吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

23、将一张正方形的纸片按下图所示的方式三次折叠,折叠后再按图所示沿MN裁剪,则得到的图形是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

16、将一张正方形的纸片按如图所示的方式三次折叠,折叠后再按图所示沿折痕MN裁剪,则可得(  )

查看答案和解析>>

同步练习册答案