精英家教网 > 初中数学 > 题目详情
在△ABC和△DEF中,∠ABC=∠DEF=90°,AB=DE=a,BC=EF=b(a<b),B、C、D、E四点都在直线m上,点B与点D重合.连接AE、FC,我们可以借助于S△ACE和S△FCE的大小关系证明不等式:a2+b2>2ab(b>a>0).
精英家教网
解决下列问题:
(1)现将△DEF沿直线m向右平移,设BD=k(b-a),且0≤k≤1,如图2.当BD=EC时,k=
 
.并利用此图,仿照上述方法,证明不等式:a2+b2>2ab(b>a>0)
(2)用四个与△ABC全等的直角三角形纸板进行拼接,也能够借助图形证明上述不等式.请你画出一个示意图,并简要说明理由.
分析:(1)连接AD、BF,构成同底的两个三角形,再利用两个三角形的边之间的关系,代入三角形的面积公式求解即可;
(2)答案不唯一,举例说明:根据直角三角形及矩形的面积公式求得面积后,再根据它们之间的数量关系来比较.
解答:精英家教网答:(1)k=
1
2

证明:连接AD、BF.
可得BD=
1
2
(b-a),
∴S△ABD=
1
2
BD•AB=
1
2
×
1
2
×(b-a)•a=
1
4
a(b-a),
S△FBD=
1
2
BD•FE=
1
2
×
1
2
×(b-a)•b=
1
4
b(b-a).
∵b>a>0,
∴S△ABD<S△FBD,即
1
4
a(b-a)<
1
4
b(b-a),
∴ab-a2<b2-ab.
∴a2+b2>2ab;
故填:
1
2


(2)答案不唯一,举例:如图,理由:
证明:延长BA、FE交于点I.
∵b>a>0,
∴S矩形IBCE>S矩形ABCD
即b(b-a)>a(b-a).
∴b2-ab>ab-a2
∴a2+b2>2ab.
举例:如图,理由:
四个直角三角形的面积和S1=4×
1
2
a•b=2ab,
大正方形的面积S2=a2+b2
∵b>a>0,
∴S2>S1.∴a2+b2>2ab.
点评:本题考查了几何变换综合题.做这类题目时,结合图形来解答会降低题的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、在△ABC和△DEF中,∠A=50°,∠B=70°,AB=3cm,∠D=50°,∠E=70°,EF=3cm.则△ABC与△DEF(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

7、在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是①AC=DF  ②BC=EF  ③∠B=∠E  ④∠C=∠F(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件,请你在其中选3个作为条件,余下的1个作为结论,使其成为一个真命题,并加以证明.
(1)BE=CF,(2)AC=DF,(3)∠ABC=∠DEF,(4)AB=DE.
我所选择的条件是:
(1)(2)(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有六个条件,请你在其中选三个作为已知条件,余下的选一个作为结论,编写出一个真命题,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF;⑤∠ACB=∠DEF;⑥∠A=∠D(填写序号即可)
已知:
①②
①②

结论:

理由:
SSS
SSS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知BC∥EF,且BC=EF,AF=CD,则AB=DE,说明理由.
解:∵BC∥EF (已知)
∴∠BCA=∠
EFD
EFD
 (
两直线平行,内错角相等
两直线平行,内错角相等

又∴AF=CD (已知)
∴AF+FC=CD+FC
AC
AC
=
FD
FD

在△ABC和△DEF中
BC=EF
∠BCA=∠EFD
∠BCA=∠EFD

AC=DF
AC=DF

∴△ABC≌△DEF(
SAS
SAS

∴AB=DE(
全等三角形的对应边相等
全等三角形的对应边相等

查看答案和解析>>

同步练习册答案