精英家教网 > 初中数学 > 题目详情
图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于M.

(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN;
(2)如图②,当DFAC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由.
(1)证明:∵∠ACB=90°,D是AB的中点.
∴CD=AD=BD,
又∵∠B=90°-∠A=60°,
∴△BCD是等边三角形.
又∵CN⊥DB,
∴DN=
1
2
DB.
∵∠EDF=90°,△BCD是等边三角形,
∴∠ADG=30°,而∠A=30°.
∴GA=GD.
∵GM⊥AB,
∴AM=
1
2
AD.
又∵AD=DB,
∴AM=DN.

(2)(1)的结论依然成立.理由如下:
∵DFAC,
∴∠1=∠A=30°,∠AGD=∠GDH=90°,
∴∠ADG=60°.
∵∠B=60°,AD=DB,
∴△ADG≌△DBH,
∴AG=DH.
又∵GM⊥AB,HN⊥AB,
∴∠GMA=∠HND=90°,
∵∠1=∠A,
∴Rt△AMG≌Rt△DNH,
∴AM=DN.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,直角梯形ABCD中,ADBC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD中,对角线AC、BD交于点O,∠ADB=30°,如果把AC所在的直线绕O点顺时针旋转一定的角度,这条直线与AD、BC分别交于E、F点,要使四边形BEDF是菱形,这个旋转最小的角是(  )
A.45°B.35°C.30°D.25°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知△ABC的顶点坐标是A(-1,3),B(-3,3),C(-4,1),
(1)分别写出与点A、B、C关于原点O对称的点A′、B′、C′的坐标:A′______B′______C′______
(2)在坐标平面画出△A′B′C′;
(3)△A′B′C′的面积的值等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是点______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=3,AC=2,则AD的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在每个小正方形的边长为1的方格纸中,将△OAB绕O点按逆时针方向旋转90°到△OA′B′.
(1)画出△OA′B′(保留痕迹,不写画法);
(2)求顶点A从开始到结束所经过的路径的长.(结果用含有π的式子表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在等边△ABC中,点D是边AC上一点,连接BD,AD=2,将△ABD绕点A且按逆时针方向旋转60°,点D落在△ABC外一点E上,连接DE,则DE=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知△ABC,对△ABC进行如下的图形变换(要求:不写画法,保留作图痕迹).
(1)如图①,以A为旋转中心,把△ABC逆时针旋转90°;
(2)如图②,画出△A′B′C′,使△ABC与△A′B′C′关于点O成中心对称.

查看答案和解析>>

同步练习册答案