
(1)证明:连接BC,
∵AB为直径,
∴∠ACB=90°,
在Rt△ABC中,cosA=

=

,
∴∠A=30°,
又∵PC=AC,
∴∠CPE=∠A=30°,
∴∠COP=∠A+∠ACO=2∠A=60°,
∴∠OCP=180°-∠CPE-∠COP=90°,
∴PC与⊙O相切;
(2)解:在Rt△CDP中,
∵CD=2,CP=

∴DP=

作DH⊥AP垂足为H
∵∠HOD=∠COE,OC=OD,∠CEO=∠DHO=90°,
∴Rt△DHO≌Rt△CEO
可得DH=CE=AC•sin30°=

在Rt△DHP中:sin∠APD=

=

=

分析:(1)连接BC,AB为直径,解直角三角形ABC得∠A=30°,又PC=AC,得∠CPE=∠A=30°,∠COP=∠A+∠ACO=2∠A=60°,利用内角和定理证明∠OCP=90°;
(2)作DH⊥AP垂足为H,可证DH=CE,利用解直角三角形求CE,在Rt△CDP中,由CD=2,CP=

,利用勾股定理求DP,由sin∠APD=

求解.
点评:本题考查了切线的判定,全等三角形的判定与性质,勾股定理,圆周角定理,解直角三角形的知识.关键是作辅助线,将问题转化到特殊三角形中求解.