精英家教网 > 初中数学 > 题目详情
某小区准备新建一些停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.该小区新建1个地上停车位和1个地下停车位各需多少万元?
考点:二元一次方程组的应用
专题:
分析:设该小区新建1个地上停车位需x万元,建1个地下停车位需y万元,根据新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元,列方程组求解.
解答:解:设该小区新建1个地上停车位需x万元,建1个地下停车位需y万元,
根据题意得:
x+y=0.6
3x+2y=1.3

解得:
x=0.1
y=0.5

答:该小区新建1个地上停车位需0.1万元,建1个地下停车位需0.5万元.
点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果关于x的方程x2-x+k=0(k为常数)有两个不相等的实数根,则k的取值范围是(  )
A、k<
1
4
B、k>
1
4
C、k<4
D、k>3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,PA是⊙O的切线;
(1)求证:AP=AC;
(2)若PD=
3
,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x轴上,点A在y轴的正半轴上,点A,D的坐标分别为A(0,2),D(2,2),AB=2
2
,连接AC.
(1)求出直线AC的函数解析式;
(2)求过点A,C,D的抛物线的函数解析式;
(3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

在物理实验中,当电流通过电子元件时,每个元件的状态有两种可能:通过或断开,并且这两种状态的可能性相等.

(1)如图1,当两个电子元件a、b并联时,请用树状图或列表法表示图中P、Q之间电流能否通过的所有可能情况,并求出P、Q之间电流通过的概率;
(2)如图2,当有三个电子元件并联时,请直接写出P、Q之间电流通过的概率为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,三角板的两直角边分别交AB、BC的延长线于E、F两点,如图1,

(1)求证:△EOB≌△FOC;
(2)将等腰直角三角板的直角顶点绕点O顺时针旋转,三角板的两直角边分别交AB、BC于E、F两点,如图2,△OFC是否能成为等腰直角三角形?若能,直接写出△OFC是等腰直角三角形时BF的长;若不能,请说明理由;
(3)若将三角板的直角顶点移动到点P处,两直角边分别交AB、BC于E、F两点,如图3,若tan∠PEF=
1
3
时,请求出PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,-2),BC的长为3,反比例函数y=
k
x
的图象经过点C.
(1)求反比例函数与直经AC的解析式;
(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

一个小球以初始速度v0=5m/s运动,并且均匀减速,4s后停止运动,下图是运动时间t(s)与第t秒末的速度vt(m/s)的函数图象,下表是小球t秒内所走的路与时间的一些数据:
时间t(s) 0 1 2 3 4
路程(m) 0 4.375 7.5 9.375 10
(1)求vt与t的函数关系式,并求t的取值范围
(2)求t秒内小球所走的路程S的函数关系式和S的最大距离.
(3)若行驶的路程不小于7.5m,试根据s与t的图象,求小球运动的时间段.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为
 
cm.

查看答案和解析>>

同步练习册答案