精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD的边长为2cm,以B为圆心,BC长为半径画弧交对角线BD于E点,连接CE,P是CE上任意一点,PM⊥BC,PN⊥BD,垂足分别为M、N,则PM+PN的值为


  1. A.
    数学公式cm
  2. B.
    1cm
  3. C.
    数学公式cm
  4. D.
    2cm
A
分析:连接BP,做EH⊥BC于H点,根据题意可得BE=BC=2,EH∥DC,即可推出EH的长度,结合图形可知S△EBP+S△BPC=S△BEC,写出表达式,即可得PM+PN.
解答:解:连接BP,做EH⊥BC于H点,
∵正方形ABCD的边长为2cm,BE=CE,
∴BE=CE=DC=2,DB=2
∴EH∥DC,
∴△BHE∽△BCD,
∴BE:BD=EH:CD,
∴EH=
∵S△EBP+S△BPC=S△BEC

∴PM+PN=
故选择A.
点评:本题主要考查正方形的性质、三角形的面积公式、相似三角形的判定和性质,解题的关键△BHE∽△BCD、求出EH的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案