精英家教网 > 初中数学 > 题目详情
边长为的菱形OACB在平面直角坐标系中的位置如图所示,将该菱形绕其对角线的交点顺时针旋转90°后,再向右平移3个单位,则两次变换后点C对应点C′的坐标为( )

A.(2,4)
B.(2,5)
C.(5,2)
D.(6,2)
【答案】分析:根据勾股定理列式求出点B的纵坐标,从而得到菱形的中心,再根据旋转的性质以及平移变换求出点C′的坐标即可.
解答:解:∵菱形的边长为
∴点B的纵坐标为=2,
∴菱形的中心的坐标为(0,2),
∴该菱形绕其对角线的交点顺时针旋转90°后,再向右平移3个单位的点C的对应点C′的坐标为(5,2).
故选C.
点评:本题考查了坐标与图形变化-旋转,坐标与图形变化-平移,以及菱形的性质,根据勾股定理求出点B的纵坐标然后确定出菱形的中心的坐标是解题的关键,作出图形更形象直观.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

边长为
13
的菱形OACB在平面直角坐标系中的位置如图所示,将该菱形绕其对角线的交点顺时针旋转90°后,再向右平移3个单位,则两次变换后点C对应点C′的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=(
1
2
sin45°)x2-2x+n过原点O和x轴上另一点C,它的顶点为B,四边形AOBC是菱形,动点P、Q同时从O点出发,P沿折线OACB运动,Q沿折线OBCA运动.
(1)求出点A、点B的坐标,并求出菱形AOBC的边长;
(2)若点Q的运动速度是点P运动速度的3倍,点Q第一次运动到BC上,连接PQ交AB于点R,当AR=3
2
时,求直线PQ的解析式;
(3)若点P的运动速度是每秒2个单位长,点Q的运动速度是每秒3个单位长,运动到第一次相遇时停止.设△OPQ的面积为S,运动的时间为t,求这个运动过程中S与t之间的函数关系式,并写出当t为何值时,△OPQ的面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

边长为数学公式的菱形OACB在平面直角坐标系中的位置如图所示,将该菱形绕其对角线的交点顺时针旋转90°后,再向右平移3个单位,则两次变换后点C对应点C′的坐标为


  1. A.
    (2,4)
  2. B.
    (2,5)
  3. C.
    (5,2)
  4. D.
    (6,2)

查看答案和解析>>

科目:初中数学 来源:2013年山东省青岛市中考数学模拟试卷(四)(解析版) 题型:选择题

边长为的菱形OACB在平面直角坐标系中的位置如图所示,将该菱形绕其对角线的交点顺时针旋转90°后,再向右平移3个单位,则两次变换后点C对应点C′的坐标为( )

A.(2,4)
B.(2,5)
C.(5,2)
D.(6,2)

查看答案和解析>>

同步练习册答案