精英家教网 > 初中数学 > 题目详情
(2012•济南)(1)如图1,在?ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.
(2)如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.
分析:(1)根据四边形ABCD是平行四边形,利用平行四边形的性质得到一对边和一对角的对应相等,在加上已知的一对边的相等,利用“SAS”,证得△ADE≌△CBF,最后根据全等三角形的对应边相等即可得证;
(2)首先根据AB=AC,利用等角对等边和已知的∠A的度数求出∠ABC和∠C的度数,再根据已知的BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,最后根据三角形的内角和定理即可求出∠BDC的度数.
解答:(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
AD=CB
∠A=∠C
AE=CF

∴△ADE≌△CBF(SAS),
∴DE=BF;

(2)解:∵AB=AC,∠A=40°,
∴∠ABC=∠C=
180°-40°
2
=70°,
又BD是∠ABC的平分线,
∴∠DBC=
1
2
∠ABC=35°,
∴∠BDC=180°-∠DBC-∠C=75°.
点评:此题考查了平行四边形的性质,等腰三角形的性质,三角形的内角和定理,角平分线的定义以及全等三角形的性质与判定,熟练掌握定理与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•济南)暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需
36
36
秒.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)下列命题是真命题的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图1,在菱形ABCD中,AC=2,BD=2
3
,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图,已知双曲线y=
kx
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案