精英家教网 > 初中数学 > 题目详情

已知AD∥BC,AD=BC,若点A到BD的距离为a,那么点C到BD的距离等于________.

a
分析:根据AD∥BC,AD=BC,可以证明△ABD≌△CDB,进而可知点C到BD的距离等于点A到BD的距离.
解答:解:作图如右,
∵AD∥BC,AD=BC,

∴△ABD≌△CDB,
∴点C到BD的距离等于点A到BD的距离.
故答案为a.
点评:本题主要考查点到直线的距离的知识点,解答本题的关键是熟练掌握点到直线的距离公式,此题难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:


(1)探究新知:
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.

求证:△ABM与△ABN的面积相等. 
②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.  

(2)结论应用:   
如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.
﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚    

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(28):2.3 二次函数的应用(解析版) 题型:解答题

(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(28):27.3 实践与探索(解析版) 题型:解答题

(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(27):23.5 二次函数的应用(解析版) 题型:解答题

(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案