精英家教网 > 初中数学 > 题目详情
(2012•济南)如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.
(1)求抛物线的解析式;
(2)求cos∠CAB的值和⊙O1的半径;
(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.
分析:(1)利用待定系数法求出抛物线的解析式;
(2)如答图1所示,由△AOC为等腰直角三角形,确定∠CAB=45°,从而求出其三角函数值;由圆周角定理,确定△BO1C为等腰直角三角形,从而求出半径的长度;
(3)如答图2所示,首先利用圆及抛物线的对称性求出点D坐标,进而求出点M的坐标和线段BM的长度;点B、P、C的坐标已知,求出线段BP、BC、PC的长度;然后利用△BMN∽△BPC相似三角形比例线段关系,求出线段BN和MN的长度;最后利用两点间的距离公式,列出方程组,求出点N的坐标.
解答:解:(1)∵抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),
9a-3b+3=0
a-b+3=0

解得a=1,b=4,
∴抛物线的解析式为:y=x2+4x+3.

(2)由(1)知,抛物线解析式为:y=x2+4x+3,
∵令x=0,得y=3,
∴C(0,3),
∴OC=OA=3,则△AOC为等腰直角三角形,
∴∠CAB=45°,
∴cos∠CAB=
2
2

在Rt△BOC中,由勾股定理得:BC=
12+32
=
10

如答图1所示,连接O1B、O1C,
由圆周角定理得:∠BO1C=2∠BAC=90°,
∴△BO1C为等腰直角三角形,
∴⊙O1的半径O1B=
2
2
BC=
5


(3)抛物线y=x2+4x+3=(x+2)2-1,
∴顶点P坐标为(-2,-1),对称轴为x=-2.
又∵A(-3,0),B(-1,0),可知点A、B关于对称轴x=-2对称.
如答图2所示,由圆及抛物线的对称性可知:点D、点C(0,3)关于对称轴对称,
∴D(-4,3).
又∵点M为BD中点,B(-1,0),
∴M(-
5
2
3
2
),
∴BM=
[-
5
2
-(-1)]
2
+(
3
2
)
2
=
3
2
2

在△BPC中,B(-1,0),P(-2,-1),C(0,3),
由两点间的距离公式得:BP=
2
,BC=
10
,PC=2
5

∵△BMN∽△BPC,
BM
BP
=
BN
BC
=
MN
PC
,即
3
2
2
2
=
BN
10
=
MN
2
5

解得:BN=
3
2
10
,MN=3
5

设N(x,y),由两点间的距离公式可得:
(x+1)2+y2=(
3
2
10
)
2
(x+
5
2
)
2
+(y-
3
2
)
2
=(3
5
)
2

解之得,
x1=
7
2
y1=-
3
2
x2=
1
2
y2=-
9
2

∴点N的坐标为(
7
2
-
3
2
)或(
1
2
-
9
2
).
点评:本题综合考查了二次函数的图象与性质、待定系数法、圆的性质、相似三角形、勾股定理、两点间的距离公式等重要知识点,涉及的考点较多,试题难度较大.难点在于第(3)问,需要认真分析题意,确定符合条件的点N有两个,并画出草图;然后寻找线段之间的数量关系,最终正确求得点N的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•济南)如图,直线a∥b,直线c与a,b相交,∠1=65°,则∠2=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图,已知双曲线y=
kx
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案