精英家教网 > 初中数学 > 题目详情

已知:如图,上一点,的延长线交的延长线于.求证:△是等腰三角形.

证明:∵ ,∴ ∠

,∴ ∠

∴ ∠.∴ ∠

∵ ∠,∴ ∠.∴ △是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

24、阅读下题及证明过程:已知:如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
证明:在△AEB和△AEC中,
∵EB=EC,∠ABE=∠ACE,AE=AE,
∴△AEB≌△AEC…第一步
∴∠BAE=∠CAE…第二步
问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,D是△ABC中BC边上一点,E是AD上的一点,EB=EC,∠1=∠2.
求证:AD平分∠BAC.
证明:在△AEB和△AEC中,
EB=EC
∠1=∠2
AE=AE

∴△AEB≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
∴AD平分∠BAC(第三步)
问:上面证明过程是否正确?若正确,请写出题中标出的每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通一模)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线与点E,连接AE.
(1)求证:AE与⊙O相切;
(2)连接BD并延长交AE于点F,若EC∥AB,OA=6,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,CD是⊙O的一条非直径的弦,且AB∥CD,连接AD和BC,
(1)AD和BC相等吗?为什么?
(2)如果AB=2AD=4,且A、B、C、D四点在同一抛物线上,请在图中建立适当的直角坐标系,求出该抛物线的解析式.
(3)在(2)中所求抛物线上是否存在点P,使得S△PAB=
12
S四边形ABCD?若存在,求出P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案