精英家教网 > 初中数学 > 题目详情

⊙O为△ABC的外接圆,∠BOC=100°,则∠A=________.

50°或130°
分析:分为两种情况:当O在△ABC内部时,根据圆周角定理求出∠A=50°;当O在△ABC外部时,根据圆内接四边形性质求出∠A′=180°-∠A即可.
解答:解:分为两种情况:当O在△ABC内部时,
根据圆周角定理得:∠A=∠BOC=×100°=50°;
当O在△ABC外部时,如图在A′时,
∵A、B、A′、C四点共圆,
∴∠A+∠A′=180°,
∴∠A′=180°-50°=130°,
故答案为:50°或130°.
点评:本题考查了三角形的内切圆与内心,圆周角定理,圆内接四边形等知识点,注意:本题分为圆心O在△ABC内部和外部两种情况,题目比较好,但是一道比较容易出错的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,半圆O为△ABC的外接半圆,AC为直径,D为
BC
上的一动点.
(1)问添加一个什么条件后,能使得
BD
BC
=
BE
BD
?请说明理由;
(2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由;
(3)如图2,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图i,半圆O为△ABC的外接半圆,AC为直径,D为劣弧
BC
上的一动点,P在CB的延长线上,且有∠BAP=∠BDA.
(1)求证:AP是半圆O的切线;
(2)当其它条件不变时,问添加一个什么条件后,有BD2=BE•BC成立?说明理由;
(3)如图ii,在满足(2)问的前提下,若OD⊥BC精英家教网与H,BE=2,EC=4,连接PD,请探究四边形ABDO是什么特殊的四边形,并求tan∠DPC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧
BC
上的一动点,P在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.

查看答案和解析>>

科目:初中数学 来源:第29章《相似形》中考题集(16):29.5 相似三角形的性质(解析版) 题型:解答题

如图1,半圆O为△ABC的外接半圆,AC为直径,D为上的一动点.
(1)问添加一个什么条件后,能使得?请说明理由;
(2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由;
(3)如图2,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:第29章《相似形》常考题集(11):29.5 相似三角形的性质(解析版) 题型:解答题

如图1,半圆O为△ABC的外接半圆,AC为直径,D为上的一动点.
(1)问添加一个什么条件后,能使得?请说明理由;
(2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由;
(3)如图2,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论.

查看答案和解析>>

同步练习册答案