精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,AC=BC=1,过C作CD⊥AB,则CD的长为________.


分析:根据△ABC为直角三角形,且AC=BC=1,计算AB的长度,根据面积法(•BC•AC=•AB•CD)计算CD,
解答:在直角△ABC中,∠C=90°,
∴AB==
根据面积计算法可得(•BC•AC=•AB•CD),
∴CD==
故答案为
点评:本题考查了勾股定理的正确运用,考查了三角形面积的算方法,本题中巧妙地利用面积法计算CD是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案