精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE、CE,求△BCE面积的最大值,并求此时E点的坐标.
(3)在抛物线上是否存在点P使得△ABP为等腰三角形?若存在,请求出一共有几个符合条件的点P(简要说明理由)并写出其中一个点的坐标;若不存在这样的点P,请简要说明理由.

解:(1)将点A与B的坐标代入抛物线的解析式得:
解得:
∴抛物线的解析式为:y=-x2-2x+3;

(2)∵抛物线的解析式为:y=-x2-2x+3,
∴点C的坐标为(0,3),
设点E的坐标为(x,y),过点E作EF∥AB交y轴于F,
∴EF=-x,OB=3,OC=3,OF=-x2-2x+3,CF=3-(-x2-2x+3)=x2+2x,∴S△BEC=S梯形OBEF+S△EFC-S△BOC
=(EF+OB)•OF+EF•CF-OB•OC
=×(-x+3)×(-x2-2x+3)+×(-x)×(x2+2x)-×3×3
=-(x+2+
∴当x=-时,△BCE的面积最大,最大面积为
∴y=-x2-2x+3=
∴点E的坐标为(-);

(3)存在.
如果AP=BP,则点P在AB的垂直平分线上,即是抛物线的顶点,
∵y=-x2-2x+3=-(x+1)2+4,
∴此时P点的坐标为(-1,4);
如果AB=BP,则如图①:
如果AB=AP,则如图②:
∴存在使得△ABP为等腰三角形的P点3个;
有一点的坐标为(-1,4).
分析:(1)由抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),利用待定系数法,将点A与B的坐标代入抛物线的解析式即可求得a与b的值,则可得此抛物线的解析式;
(2)根据已知可求得点C的坐标,然后作辅助线:EF∥AB,设点E的坐标为(x,y),由S△BEC=S梯形OBEF+S△EFC-S△BOC即可求得关于x的二次函数,配方即可求得x的值,代入解析式,求得y的值;
(3)分别从AP=BP与AB=BP与AB=AP去分析,可得到存在符合条件的点有3个,其中最好求得是P在顶点时的坐标,配方求解即可.
点评:此题考查了待定系数法求二次函数的解析式,三角形的面积最大值问题以及求抛物线上的点的问题.此题综合性很强,注意数形结合与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案