二次函数的最大
(小)值的求法主要有两种:(1)直接代入抛物线顶点纵坐标的公式计算;(2)把函数关系式配方成y=a(x+h)2+k的形式,利用非负数的性质可得,当a>0时,最小值就是________;当a<0时,最大值就是________.科目:初中数学 来源: 题型:
| x2+9 |
| y2+25 |
| x2+9 |
| y2+25 |
查看答案和解析>>
科目:初中数学 来源:2012年初中毕业升学考试(四川达州卷)数学(带解析) 题型:解答题
问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:
,利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:
,问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数
的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数
的图象:
| x | ··· | 1 | 2 | 3 | 4 | ··· | |||
| y | | | | | | | | | |
查看答案和解析>>
科目:初中数学 来源:2013届北京市西城区(北区)九年级上学期期末考试数学试卷(带解析) 题型:解答题
阅读下面的材料:
小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数
的最大值.他画图研究后发现,
和
时的函数值相等,于是他认为需要对
进行分类讨论.
他的解答过程如下:
∵二次函数
的对称轴为直线
,
∴由对称性可知,
和
时的函数值相等.
∴若1≤m<5,则
时,
的最大值为2;
若m≥5,则
时,
的最大值为
.![]()
请你参考小明的思路,解答下列问题:
(1)当
≤x≤4时,二次函数
的最大值为_______;
(2)若p≤x≤2,求二次函数
的最大值;
(3)若t≤x≤t+2时,二次函数
的最大值为31,则
的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2011年河北省石家庄市新华区中考数学一模试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com