精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,AB=6,半径为1的动圆⊙P从A点出发,以每秒3个单位的速度沿折线A-B-C-D向终点D移动,设移动的时间为t秒;同时,⊙B的半径r不断增大,且r=1+t(t≥0).
(1)当t=1.5秒时,两圆的位置关系是________;
(2)当t≥4秒时,若两圆外切,则t的值为________秒.

解:(1)∵当t=1.5秒时,AP=3×1.5=4.5,⊙B的半径为1+1.5=2.5,
∴BP=6-4.5=1.5,
∵⊙P的半径为1,
∴1+1.5=2.5
∴两圆内切;

(2)当t≥4时,如图,此时BP=1+t+1=2+t,
CP=(3t-12),BC=6,
∵BC2+CP2=BP2
∴62+(3t-12)2=(2+t)2
整理得:2t2-19t+44=0
解得:t=4或t=5.5
故答案为(1)内切;(2)4或5.5.
分析:(1)当t=1.5秒时,AP的长为3×1.5=4.5,BP=6-4.5=1.5,⊙B的半径为1+1.5=2.5,根据两圆的圆心距和两圆的半径判断两圆的位置关系即可;
(2)利用两圆外切时,两圆的半径之和等于两圆的圆心距列出有关t的方程求得t值即可.
点评:本题考查了圆与圆的位置关系,解题的关键是将动点问题利用方程的方法来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案