精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2 ,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)

【答案】
(1)解:如图:连接OD,

∵OA=OD,

∴∠OAD=∠ADO,

∵∠BAC的角平分线AD交BC边于D,

∴∠CAD=∠OAD,

∴∠CAD=∠ADO,

∴AC∥OD,

∵∠C=90°,

∴∠ODB=90°,

∴OD⊥BC,

即直线BC与⊙O的切线,

∴直线BC与⊙O的位置关系为相切


(2)解:设⊙O的半径为r,则OB=6﹣r,又BD=2

在Rt△OBD中,

OD2+BD2=OB2

即r2+(2 2=(6﹣r)2

解得r=2,OB=6﹣r=4,

∴∠DOB=60°,

∴S扇形ODE= = π,

SODB= ODBD= ×2×2 =2V,

∴线段BD、BE与劣弧DE所围成的图形面积为:SODB﹣S扇形ODE=2 π.


【解析】(1)根据题意得:O点应该是AD垂直平分线与AB的交点;由∠BAC的角平分线AD交BC边于D,与圆的性质可证得AC∥OD,又由∠C=90°,则问题得证;(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得“线段BD、BE与劣弧DE所围成的图形面积为:SODB﹣S扇形ODE=2 π”.
【考点精析】本题主要考查了勾股定理的概念和扇形面积计算公式的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O是△ABC边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=8,CF=6,求OC的长;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.

(1)试在图中标出点D,并画出该四边形的另两条边;
(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,一次函数 的图象是直线l1 , l1与x轴、y轴分别相交于A、B两点.直线l2过点C(a,0)且与直线l1垂直,其中a>0.点P、Q同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q沿射线AO运动,速度为每秒5个单位.
(1)写出A点的坐标和AB的长;
(2)当点P、Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,求此时a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.
(1)本次抽测的男生有人,抽测成绩的众数是
(2)请你将图2的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是(
A.他离家8km共用了30min
B.他等公交车时间为6min
C.他步行的速度是100m/min
D.公交车的速度是350m/min

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利民商店经销甲、乙两种商品.现有如下信息:
请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各多少元?
(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是(
A.a>0
B.当x>1时,y随x的增大而增大
C.c<0
D.3是方程ax2+bx+c=0的一个根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.
(1)如图①,当PA的长度等于时,∠PAD=60°;当PA的长度等于时,△PAD是等腰三角形;
(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3 . 设P点坐标为(a,b),试求2S1S3﹣S22的最大值,并求出此时a、b的值.

查看答案和解析>>

同步练习册答案