精英家教网 > 初中数学 > 题目详情
精英家教网已知四边形ABCD,AB∥CD,且AB=AC=AD=a,BC=b,且2a>b.求cos∠DBA的值.
分析:欲求∠DBA的余弦值,需将已知条件构建到一个直角三角形中求解;已知四边形ABCD中,AB=AC=AD;若以A为圆心,AB为半径作圆,则此圆必过C、D;延长BA交⊙A于E,则BE为⊙A的直径,连接DE,在Rt△BDE中,已知了BE=2a,需求出BD的长;根据DC∥AB,易证得DE=BC=b,则根据勾股定理即可求得BD的长,由此得解.
解答:精英家教网解:以A为圆心,以a为半径作圆.延长BA交⊙A于E点,连接ED;(1分)
∵AB∥CD,
∴∠CAB=∠DCA,∠DAE=∠CDA;
∵AC=AD,∴∠DCA=∠CDA,
∴∠DAE=∠CAB;(2分)
在△ABC和△DAE中,
AD=AC
∠DAE=∠CAB
AE=AB

∴△CAB≌△DAE,(3分)
∴ED=BC=b(4分)
∵BE是直径,
∴∠EDB=90°
在Rt△EDB中,
ED=b,BE=2a,
由勾股定理得ED2+BD2=BE2
BD=
BE2-ED2
=
(2a)2-b2
=
4a2-b2
(5分)
cos∠DBA=
BD
BE
=
4a2-b2
2a
.(6分)
点评:此题主要考查了圆周角定理、勾股定理以及全等三角形的判定;能够通过辅助线构建出⊙A是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

32、如图,已知四边形ABCD和直线L.
(1)作出四边形ABCD以直线L为对称轴的对称图形A′B′C′D′;
(2)分别延长4条线段,使它们相交,你发现什么?
(3)你能提出更多的问题吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3.下列命题错误的是(  )
A、△ABE≌△DCEB、∠BDA=45°C、S四边形ABCD=24.5D、图中全等的三角形共有2对

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图已知四边形ABCD、AEFP,均为正方形.
(1)如图1若连接BE、DP猜想BE与DP满足怎样的数量关系和位置关系;
(2)如图2若四边形AEFP绕点A按逆时针方向旋转,在旋转过程中,(1)中猜想出的结论是否总成立?若成立请给予证明;若不成立,请说明理由;
(3)如图3若四边形AEFP绕点A按逆时针方向继续旋转,在旋转过程中,(1)中猜想出的结论是否总成立?直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD是边长为2的正方形,E是AB的中点,F是BC的中点,AF与DE相交于G,BD和AF相交于H,那么四边形BEGH的面积是(  )精英家教网
A、
1
3
B、
2
5
C、
7
15
D、
8
15

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD∽四边形A'B'C'D',连接AC和A'C',△ABC与△A'B'C'相似吗?为什么?

查看答案和解析>>

同步练习册答案