精英家教网 > 初中数学 > 题目详情

如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图像经过点B、D.

(1)请直接写出用m表示点A、D的坐标;

(2)求这个二次函数的解析式;

(3)点Q为二次函数图像上点P至点B之间的一点,连结PQ、BQ,求四边形ABQP面积的最大值.

答案:
解析:

  解:(1)A(3-m,0),D(0,m-3);2分

  (2)设以P(1,0)为顶点的抛物线的解析式为y=a(x-1)2(a≠0)

  ∵抛物线过点B、D,

  ∴;解得;4分

  所以二次函数的解析式为y=(x-1)2

  即:y=x2-2x+1;5分

  (3)设点Q的坐标为(x,x2-2x+1),显然1<x<3;6分

  连结BP,过点Q作QH⊥x轴,交BP于点H.

  ∵A(-1,0),P(1,0),B(3,4)

  ∴AP=2,BC=3,PC=2

  由P(1,0),B(3,4)求得直线BP的解析式为y=2x-2

  ∵QH⊥x轴,点Q的坐标为(x,x2-2x+1)

  ∴点H的横坐标为x,∴点H的坐标为(x,2x-2)

  ∴QH=2x-2-(x2-2x+1)=-x2+4x-3;7分

  ∴四边形ABQP面积S=S△APB+S△QPB×AP×BC+×QH×PC

  =×2×4+×(-x2+4x-3)×2

  =-x2+4x+1=-(x-2)2+5;9分

  ∵1<x<3

  ∴当x=2时,S取得最大值为5,10分

  即当点Q的坐标为(2,1)时,四边形ABQP面积的最大值为5.

  说明:用平行于PB的直线与抛物线相切于点Q的方法而得出准确结果不给全分(注:初中阶段没有解题依据),可统一扣1分.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3精英家教网,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.
(1)用m表示点A、D的坐标;
(2)求这个二次函数的解析式;
(3)点Q为二次函数图象上点P至点B之间的一点,且点Q到△ABC边BC、AC的距离相等,连接PQ、BQ,求四边形ABQP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,已知△ABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边△ADE.
(1)△ACD和△CBF全等吗?请说明理由;
(2)判断四边形CDEF的形状,并说明理由;
(3)当点D在线段BC上移动到何处时,∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC为等边三角形,D,E,F分别在边BC,CA,AB上,且△DEF也是等边三角形,除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC为等边三角形,点D.E分别在BC.AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠AFE的度数.

查看答案和解析>>

同步练习册答案