精英家教网 > 初中数学 > 题目详情
如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-
3
4
x+3的图象与y轴、x轴的交点,点B在二次函数y=
1
8
x2+bx+c
的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.
(1)试求b,c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:
①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?
(1)由y=-
3
4
x+3,
令x=0,得y=3,所以点A(0,3);
令y=0,得x=4,所以点C(4,0),
∵△ABC是以BC为底边的等腰三角形,
∴B点坐标为(-4,0),
又∵四边形ABCD是平行四边形,
∴D点坐标为(8,3),
将点B(-4,0)、点D(8,3)代入二次函数y=
1
8
x2+bx+c,可得
2-4b+c=0
8+8b+c=3

解得:
b=-
1
4
c=-3

故该二次函数解析式为:y=
1
8
x2-
1
4
x-3.

(2)∵OA=3,OB=4,
∴AC=5.
①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5-t,
∵PQ⊥AC,
∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,
∴△APQ△CAO,
AP
AC
=
AQ
CO
,即
t
5
=
5-t
4

解得:t=
25
9

即当点P运动到距离A点
25
9
个单位长度处,有PQ⊥AC.
②∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=
1
2
×8×3=12,
∴当△APQ的面积最大时,四边形PDCQ的面积最小,
当动点P运动t秒时,AP=t,CQ=t,AQ=5-t,
设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH△CAO可得:
h
3
=
5-t
5

解得:h=
3
5
(5-t),
∴S△APQ=
1
2
3
5
(5-t)=
3
10
(-t2+5t)=-
3
10
(t-
5
2
2+
15
8

∴当t=
5
2
时,S△APQ达到最大值
15
8
,此时S四边形PDCQ=12-
15
8
=
81
8

故当点P运动到距离点A
5
2
个单位处时,四边形PDCQ面积最小,最小值为
81
8
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

有一座抛物线形拱桥,在正常水位AB时,水面AB宽24m,拱顶距离水面4m.以抛物线的顶点为原点,以抛物线的对称轴为y轴,建立如图所示的平面直角坐标系.
(1)求抛物线的解析式;
(2)若水位上升3m就达到警戒线CD的位置,求这时水面CD的宽度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.
(1)求过A,B,C三点的抛物线的解析式;
(2)求点D的坐标;
(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,
9
5
).
(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;
(Ⅱ)求过A、B、C三点的抛物线Q的解析式;
(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xoy中,以原点为圆心的⊙O的半径是
4
5
5
,过A(0,4)作⊙O的切线交x轴于点B,T是切点,抛物线y=ax2+bx+c的顶点为C(3,-
1
2
),且抛物线过A、B两点.
(1)求此抛物线的解析式;
(2)如果此抛物线的对称轴交x轴于D点,问在y轴的负半轴上是否存在点P,使△BCD△OPB?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与x轴交于A、B两点(点B在点A的右侧,且AB=8),与y轴交于点C,其中点A在x轴的负半轴上,点C在y轴的正半轴上,线段OA、OC的长(OA<OC)是方程x2-14x+48=0的两个根.
(1)求此抛物线的解析式;
(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EFAC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+bx-a2
(1)请你选定a、b适当的值,然后写出这条抛物线与坐标轴的三个交点,并画出过三个交点的圆;
(2)试讨论此抛物线与坐标轴交点分别是1个,2个,3个时,a、b的取值范围,并且求出交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,请解答下面的问题,并写出探索的主要过程:
(1)经过多少时间后,P、Q两点的距离为5
2
cm2
(2)经过多少时间后,S△PCQ的面积为15cm2
(3)请用配方法说明,何时△PCQ的面积最大,最大面积是多少?

查看答案和解析>>

同步练习册答案