精英家教网 > 初中数学 > 题目详情
如图,O直AB一点,∠A0C=∠BOC,OC是∠AOD的平分线,
(1)∠AOD的度数.
(2)试判断OD与AB位置关系.
 
解:∵∠AOC+ ∠BOC=180 °∠AOC=BOC
∴∠AOC=×180°=45°    
   ∵OCAOD平分线     
 ∴∠COD=∠AOC=45°
⑵由知∠COD=∠AOC=45°
∴∠AOD=90°∴ODAB
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•金牛区二模)如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O的直经BD=6,连接CD、AO、BC,且AO与BC相交于点E.
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(3)请阅读下方资源链接内容.在(2)的基础上,若CD、AO的长分别为一元二次方程x2-(4m+1)x+4m2+2=0的两个实数根,求AB的长.

查看答案和解析>>

科目:初中数学 来源:黑龙江省期末题 题型:解答题

如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直经BD=6,连结CD、AO。
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x取值范围;
(3)若AO+CD=11,求AB的长。

查看答案和解析>>

科目:初中数学 来源:2013学年四川省成都市名师堂学校中考数学模拟试卷(四)(解析版) 题型:解答题

如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O的直经BD=6,连接CD、AO、BC,且AO与BC相交于点E.
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(3)请阅读下方资源链接内容.在(2)的基础上,若CD、AO的长分别为一元二次方程x2-(4m+1)x+4m2+2=0的两个实数根,求AB的长.

查看答案和解析>>

科目:初中数学 来源:2012年四川省成都市中考数学模拟试卷(三)(解析版) 题型:解答题

如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O的直经BD=6,连接CD、AO、BC,且AO与BC相交于点E.
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(3)请阅读下方资源链接内容.在(2)的基础上,若CD、AO的长分别为一元二次方程x2-(4m+1)x+4m2+2=0的两个实数根,求AB的长.

查看答案和解析>>

同步练习册答案