精英家教网 > 初中数学 > 题目详情

在△ABC中,AB=2AC,AF=数学公式AB,D、E分别为AB、BC的中点,EF与CA的延长线交于点G,求证:AF=AG.

证明:取AC的中点M,连接EM,
∵E,M,分别是BC,AC的中点,
∴EM是△ABC的中位线,
又∵EM=AB,AF=AB,
∴AF=EM,
又∵EM∥AB,
==,即AG=AM=AC,
∵AC=AB,
∴AG=AB,
∵AF=AB,
∴AG=AF.
分析:取AC的中点M,连接EM,根据EM是△ABC的中位线,AF是△EMG的中位线,AF=AB,AC=AB,即可解答.
点评:本题考查了三角形中位线的性质,比较简单,如果三角形中位线的性质没有记住,可根据三角形相似比为1:2,得出正确结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案