分析 由折叠可知∠MNB1=∠BNM,MN⊥BB1,再根据同角的余角相等的性质和等量关系即可判定①正确;根据AA可证△MEN∽△BCB1,可判定②正确;
根据相似三角形的性质和等量关系可得$\frac{MN}{B{B}_{1}}$=$\frac{AB}{BC}$=$\frac{1}{2}$,为定值,可判定③正确;根据相似三角形的性质和勾股定理可得AM=BE=BN-NE=$\frac{17}{8}$-$\frac{1}{2}$=$\frac{13}{8}$,可判定④不正确;从而求解.
解答 解:由折叠可知∠MNB1=∠BNM,MN⊥BB1,
∴∠BNM+∠B1BN=90°,
∵∠ABB1+∠B1BN=90°,
∴∠BNM=∠ABB1,
∴∠MNB1=∠ABB1,故①正确;
∵ME⊥BC,
∴∠MNE+∠NME=90°,
由由折叠的性质可得MN⊥BB1,
∴∠MNE+∠B1BN=90°,
∴∠NME=∠BB1N,
∴△MEN∽△BCB1,
故②正确;
由②可知$\frac{MN}{B{B}_{1}}$=$\frac{ME}{BC}$,
∵ME=AB=2,BC=4,
∴$\frac{MN}{B{B}_{1}}$=$\frac{AB}{BC}$=$\frac{1}{2}$,为定值,故③正确;
∵△MEN∽△BCB1,
∴$\frac{NE}{{B}_{1}C}$=$\frac{ME}{BC}$=$\frac{1}{2}$,
∴NE=$\frac{1}{2}$B1C,
若B1C=$\frac{1}{2}$DC,
则NE=$\frac{1}{4}$DC=$\frac{1}{4}$×2=$\frac{1}{2}$,
设BN=x,则NC=4-x,B1N=x,
在Rt△B1NC中,由勾股定理可得x2=(4-x)2+12,
解得x=$\frac{17}{8}$,
∴AM=BE=BN-NE=$\frac{17}{8}$-$\frac{1}{2}$=$\frac{13}{8}$,故④不正确.
故答案为:①②③.
点评 本题主要考查了相似三角形的判定与性质,解答本题主要应用了矩形的性质、翻折的性质,熟记翻折前后的两个图形能够完全重合得到相等的边和角是解题的关键..
科目:初中数学 来源: 题型:选择题
| A. | -8 | B. | 6 | C. | -5 | D. | 7 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 若x-4=9,则x=8-4 | B. | 若2(2x+3)=2,则4x+6=2 | ||
| C. | 若-$\frac{1}{2}$x=4,则x=-2 | D. | 若$\frac{1}{3}$-$\frac{x-1}{2}$=1,则去分母得2-3(x-1)=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com