精英家教网 > 初中数学 > 题目详情

正方形ABCD的边长为6,⊙O过B、C两点,⊙O的半径为数学公式,那么AO的长为________.


分析:先根据题意画出图形,由于⊙O的圆心在正方形ABC的内部与外部不能确定,故应分两种情况讨论:
①当⊙O的圆心在正方形ABCD的外部时,连接OB,过O作OG⊥AD于点G,交BC于点F,由垂径定理可知OF是BC的垂直平分线,再根据勾股定理求出OF的长;然后根据勾股定理在Rt△OAG中求得OA的长即可;
②当⊙O的圆心在正方形ABCD的外部时,连接OB,过O作OF⊥BC,OE⊥AB,E、F为垂足,由垂径定理可知OF垂直平分BC,进而可得出BF的长,由勾股定理可求出OF的长,由锐角三角函数的定义即可得出tan∠BAO的值.
解答:解:①当⊙O的圆心在正方形ABCD的外部时,如图1所示:
连接OB,过O作OG⊥AD于点G,交BC于点F,
∵AD∥BC,OG⊥BC,
∴OF是BC的垂直平分线,
∵BC=6,
∴BF=AG=3,
∵OB=
∴OF==1,
∴OG=OF+GF=7,
在Rt△OAG中,
OA==
②当⊙O的圆心在正方形ABCD的外部时,如图2所示:
连接OB,过O作OF⊥BC,OE⊥AB,E、F为垂足,
∴四边形OEBF是矩形;
∵BC=6,
∴BF=BC=×6=3(垂径定理);
∴OE=BF=3,OF=BE,
在Rt△OBF中,OF==1,
∴BE=1,AE=AB-BE=6-1=5,
在Rt△OAE中,
OA==
故答案为:
点评:本题考查的是垂径定理、正方形的性质、勾股定理,解答此题时要注意分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网附加题
如图所示,正方形ABCD的边长为7,AE=BF=CG=DH=3,甲、乙两只蚂蚁同时从A点出发,甲蚂蚁以每秒
3
5
的速度沿路线AE→EF→FG→GH→HE→EB→BC→CD→DA循环爬行;乙蚂蚁以每秒
4
5
的速度沿路线AH→HG→GF→FE→EH→HD→DC→CB→BA循环爬行.那么出发后两只蚂蚁在第
 
s第一次相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP=3
2
,PE⊥PB交CD于点E,则PE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD的边长为4,P是BC上一动点,QP⊥AP交DC于Q,设PB=x,△ADQ的面积为y.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积;若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标;
(3)画出这个函数的图象;
(4)点P是否存在这样的位置,使△APB的面积是△ADQ的面积的
23
?若存在,求出BP的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为6,点M在边DC上,M,N两点关于对角线AC对称,若DM=2,则tan∠ADN=
3
2
3
2

查看答案和解析>>

同步练习册答案