精英家教网 > 初中数学 > 题目详情
如图所示,抛物线y=ax2+bx-4a经过A(-l,0)、C(0,4)两点,与x轴交于另一点B。
(1)求抛物线的解析式;
(2)已知点D(m,m+l)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连结BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标。
解:(1))∵抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点

解得
∴抛物线的解析式为y=-x2+3x+4;
(2))∵点D(m,m+1)在抛物线上
∴m+l=-m2+3m+4,即m2-2m-3=0
所以,m=-1或m=3
∵点D在第一象限
∴点D的坐标为(3,4)
由(1)知OC=OB
所以,∠CBA=45°
设点D关于直线BC的对称点为点M
∵C(0,4)
∴CD∥AB,且CD=3
∴∠MCB=∠DCB=45°
∴M点在y轴上,且CM=CD=3
∴OM=1
∴M(0,1)
即点D关于直线BC对称的点的坐标为(0,1);
(3)作PF⊥AB于F,DE⊥BC于E
由(1)有:OB=OC=4
∴∠OBC=45°
∵∠DBP=45°
∴∠CBD=∠PBA
∵C(0,4),D(3,4)
∴CD∥OB且CD=3
∴∠DCE=∠CB0=45°
∴DE=CE=
∵OB=OC=4
∴BC=4
∴BE=BC-CE=
∴tan∠PBF=tan∠CBD=
设PF=3t,则BF=5t
∴OF=5t-4
∴P(-5t+4,3t)
∵P点在抛物线上
∴3t=-(-5t+4)2+3(-5t+4)+4
∴t=0(舍去)或t=
∴P(-)。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是(  )
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河源二模)已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•槐荫区一模)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(-1,0)、(0,-3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示,抛物线对应的函数解析表达式只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示的抛物线是把y=-x2经过平移而得到的.这时抛物线过原点O和x轴正向上一点A,顶点为P;
①当∠OPA=90°时,求抛物线的顶点P的坐标及解析表达式;
②求如图所示的抛物线对应的二次函数在-
1
2
≤x≤
1
2
时的最大值和最小值.

查看答案和解析>>

同步练习册答案